An Empirical Study into Clustering of Unseen Datasets with Self-Supervised Encoders
- URL: http://arxiv.org/abs/2406.02465v1
- Date: Tue, 4 Jun 2024 16:34:17 GMT
- Title: An Empirical Study into Clustering of Unseen Datasets with Self-Supervised Encoders
- Authors: Scott C. Lowe, Joakim Bruslund Haurum, Sageev Oore, Thomas B. Moeslund, Graham W. Taylor,
- Abstract summary: We deploy pretrained image models on datasets they were not trained for, and investigate whether their embeddings form meaningful clusters.
This evaluation provides new insights into the embeddings of self-supervised models, which prioritize different features to supervised models.
- Score: 34.000135361782206
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Can pretrained models generalize to new datasets without any retraining? We deploy pretrained image models on datasets they were not trained for, and investigate whether their embeddings form meaningful clusters. Our suite of benchmarking experiments use encoders pretrained solely on ImageNet-1k with either supervised or self-supervised training techniques, deployed on image datasets that were not seen during training, and clustered with conventional clustering algorithms. This evaluation provides new insights into the embeddings of self-supervised models, which prioritize different features to supervised models. Supervised encoders typically offer more utility than SSL encoders within the training domain, and vice-versa far outside of it, however, fine-tuned encoders demonstrate the opposite trend. Clustering provides a way to evaluate the utility of self-supervised learned representations orthogonal to existing methods such as kNN. Additionally, we find the silhouette score when measured in a UMAP-reduced space is highly correlated with clustering performance, and can therefore be used as a proxy for clustering performance on data with no ground truth labels. Our code implementation is available at \url{https://github.com/scottclowe/zs-ssl-clustering/}.
Related papers
- Autoencoded UMAP-Enhanced Clustering for Unsupervised Learning [49.1574468325115]
We propose a novel approach to unsupervised learning by constructing a non-linear embedding of the data into a low-dimensional space followed by any conventional clustering algorithm.
The embedding promotes clusterability of the data and is comprised of two mappings: the encoder of an autoencoder neural network and the output of UMAP algorithm.
When applied to MNIST data, AUEC significantly outperforms the state-of-the-art techniques in terms of clustering accuracy.
arXiv Detail & Related papers (2025-01-13T22:30:38Z) - Adaptive Self-supervised Robust Clustering for Unstructured Data with Unknown Cluster Number [12.926206811876174]
We introduce a novel self-supervised deep clustering approach tailored for unstructured data, termed Adaptive Self-supervised Robust Clustering (ASRC)
ASRC adaptively learns the graph structure and edge weights to capture both local and global structural information.
ASRC even outperforms methods that rely on prior knowledge of the number of clusters, highlighting its effectiveness in addressing the challenges of clustering unstructured data.
arXiv Detail & Related papers (2024-07-29T15:51:09Z) - A Closer Look at Benchmarking Self-Supervised Pre-training with Image Classification [51.35500308126506]
Self-supervised learning (SSL) is a machine learning approach where the data itself provides supervision, eliminating the need for external labels.
We study how classification-based evaluation protocols for SSL correlate and how well they predict downstream performance on different dataset types.
arXiv Detail & Related papers (2024-07-16T23:17:36Z) - Lightweight Unsupervised Federated Learning with Pretrained Vision Language Model [32.094290282897894]
Federated learning aims to train a collective model from physically isolated clients while safeguarding the privacy of users' data.
We propose a novel lightweight unsupervised federated learning approach that leverages unlabeled data on each client to perform lightweight model training and communication.
Our proposed method greatly enhances model performance in comparison to CLIP's zero-shot predictions and even outperforms supervised federated learning benchmark methods.
arXiv Detail & Related papers (2024-04-17T03:42:48Z) - Deep Contrastive Graph Learning with Clustering-Oriented Guidance [61.103996105756394]
Graph Convolutional Network (GCN) has exhibited remarkable potential in improving graph-based clustering.
Models estimate an initial graph beforehand to apply GCN.
Deep Contrastive Graph Learning (DCGL) model is proposed for general data clustering.
arXiv Detail & Related papers (2024-02-25T07:03:37Z) - Probing clustering in neural network representations [30.640266399583613]
We study how the many design choices involved in neural network training affect the clusters formed in the hidden representations.
We isolate the training dataset and architecture as important factors affecting clusterability.
We find that normalization strategies affect which layers yield the best clustering performance.
arXiv Detail & Related papers (2023-11-14T02:33:54Z) - A Deep Dive into Deep Cluster [0.2578242050187029]
DeepCluster is a simple and scalable unsupervised pretraining of visual representations.
We show that DeepCluster convergence and performance depend on the interplay between the quality of the randomly filters of the convolutional layer and the selected number of clusters.
arXiv Detail & Related papers (2022-07-24T22:55:09Z) - Using Representation Expressiveness and Learnability to Evaluate
Self-Supervised Learning Methods [61.49061000562676]
We introduce Cluster Learnability (CL) to assess learnability.
CL is measured in terms of the performance of a KNN trained to predict labels obtained by clustering the representations with K-means.
We find that CL better correlates with in-distribution model performance than other competing recent evaluation schemes.
arXiv Detail & Related papers (2022-06-02T19:05:13Z) - You Never Cluster Alone [150.94921340034688]
We extend the mainstream contrastive learning paradigm to a cluster-level scheme, where all the data subjected to the same cluster contribute to a unified representation.
We define a set of categorical variables as clustering assignment confidence, which links the instance-level learning track with the cluster-level one.
By reparametrizing the assignment variables, TCC is trained end-to-end, requiring no alternating steps.
arXiv Detail & Related papers (2021-06-03T14:59:59Z) - CLASTER: Clustering with Reinforcement Learning for Zero-Shot Action
Recognition [52.66360172784038]
We propose a clustering-based model, which considers all training samples at once, instead of optimizing for each instance individually.
We call the proposed method CLASTER and observe that it consistently improves over the state-of-the-art in all standard datasets.
arXiv Detail & Related papers (2021-01-18T12:46:24Z) - Consensus Clustering With Unsupervised Representation Learning [4.164845768197489]
We study the clustering ability of Bootstrap Your Own Latent (BYOL) and observe that features learnt using BYOL may not be optimal for clustering.
We propose a novel consensus clustering based loss function, and train BYOL with the proposed loss in an end-to-end way that improves the clustering ability and outperforms similar clustering based methods.
arXiv Detail & Related papers (2020-10-03T01:16:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.