Velocity Scanning Tomography for Room-Temperature Quantum Simulation
- URL: http://arxiv.org/abs/2406.02494v1
- Date: Tue, 4 Jun 2024 17:08:30 GMT
- Title: Velocity Scanning Tomography for Room-Temperature Quantum Simulation
- Authors: Jiefei Wang, Ruosong Mao, Xingqi Xu, Yunzhou Lu, Jianhao Dai, Xiao Liu, Gang-Qin Liu, Dawei Lu, Huizhu Hu, Shi-Yao Zhu, Han Cai, Da-Wei Wang,
- Abstract summary: We invent and validate a velocity scanning tomography technique to discern the responses of atoms with different velocities.
By comparing absorption spectra with and without atoms moving at specific velocities, we can derive the Wannier-Stark ladders of the SL.
We extract the Zak phase of the SL by monitoring the ladder frequency shift as a function of the atomic velocity.
- Score: 19.215193904335496
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum simulation offers an analog approach for exploring exotic quantum phenomena using controllable platforms, typically necessitating ultracold temperatures to maintain the quantum coherence. Superradiance lattices (SLs) have been harnessed to simulate coherent topological physics at room temperature, but the thermal motion of atoms remains a notable challenge in accurately measuring the physical quantities. To overcome this obstacle, we invent and validate a velocity scanning tomography technique to discern the responses of atoms with different velocities, allowing cold-atom spectroscopic resolution within room-temperature SLs. By comparing absorption spectra with and without atoms moving at specific velocities, we can derive the Wannier-Stark ladders of the SL across various effective static electric fields, their strengths being proportional to the atomic velocities. We extract the Zak phase of the SL by monitoring the ladder frequency shift as a function of the atomic velocity, effectively demonstrating the topological winding of the energy bands. Our research signifies the feasibility of room-temperature quantum simulation and facilitates their applications in quantum information processing.
Related papers
- A dissipation-induced superradiant transition in a strontium cavity-QED system [0.0]
In cavity quantum electrodynamics (QED), emitters and a resonator are coupled together to enable precise studies of quantum light-matter interactions.
Here we provide an observation of the continuous superradiant phase transition predicted in the CRF model using an ensemble of ultracold $88$Sr atoms.
Our observations are a first step towards finer control of driven-dissipative systems, which have been predicted to generate quantum states.
arXiv Detail & Related papers (2024-08-20T18:00:00Z) - Light-induced fictitious magnetic fields for quantum storage in cold atomic ensembles [20.77204722797697]
We have demonstrated that optically generated fictitious magnetic fields can be utilized to extend the lifetime of quantum memories in cold atomic ensembles.
The advantage of the use of fictitious magnetic fields for quantum storage stems from the speed and spatial precision that these fields can be synthesized.
arXiv Detail & Related papers (2024-06-12T14:20:20Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - High-dimensional quantum correlation measurements with an adaptively
gated hybrid single-photon camera [58.720142291102135]
We propose an adaptively-gated hybrid intensified camera (HIC) that combines a high spatial resolution sensor and a high temporal resolution detector.
With a spatial resolution of nearly 9 megapixels and nanosecond temporal resolution, this system allows for the realization of previously infeasible quantum optics experiments.
arXiv Detail & Related papers (2023-05-25T16:59:27Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Experimental Measurement of Out-of-Time-Ordered Correlators at Finite
Temperature [0.0]
Out-of-time-ordered correlators (OTOCs) are a key observable in a wide range of interconnected fields.
We demonstrate an experimental method to measure OTOCs at finite temperatures.
arXiv Detail & Related papers (2021-12-03T18:33:14Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.