論文の概要: Scalable MatMul-free Language Modeling
- arxiv url: http://arxiv.org/abs/2406.02528v7
- Date: Fri, 25 Jul 2025 22:38:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 14:13:29.528599
- Title: Scalable MatMul-free Language Modeling
- Title(参考訳): スケーラブルなmatMulフリー言語モデリング
- Authors: Rui-Jie Zhu, Yu Zhang, Steven Abreu, Ethan Sifferman, Tyler Sheaves, Yiqiao Wang, Dustin Richmond, Sumit Bam Shrestha, Peng Zhou, Jason K. Eshraghian,
- Abstract要約: MatMul操作は、大きな言語モデルから除外できる。
最大2.7BパラメータのモデルでテストされるMatMulフリーモデルは、最先端のトレーニング済みトランスフォーマーに匹敵する。
- 参考スコア(独自算出の注目度): 9.048532540945086
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have fundamentally altered how we approach scaling in machine learning. However, these models pose substantial computational and memory challenges, primarily due to the reliance on matrix multiplication (MatMul) within their attention and feed-forward (FFN) layers. We demonstrate that MatMul operations can be eliminated from LLMs while maintaining strong performance, even at billion-parameter scales. Our MatMul-free models, tested on models up to 2.7B parameters, are comparable to state-of-the-art pre-trained Transformers, and the performance gap narrows as model size increases. Our approach yields significant memory savings: a GPU-efficient implementation reduces memory consumption by up to 61% during training and over 10x during inference. When adapted for a multi-chip neuromorphic system, the model leverages asynchronous processing to achieve 4x higher throughput with 10x less energy than edge GPUs.
- Abstract(参考訳): 大規模言語モデル(LLM)は、機械学習におけるスケーリングのアプローチ方法を根本的に変えました。
しかし、これらのモデルは、主にマトリクス乗算(MatMul)とフィードフォワード(FFN)層に依存しているため、かなりの計算とメモリの問題を引き起こす。
我々は,10億パラメータのスケールでも,強い性能を維持しながら,MatchMul操作をLLMから排除できることを実証した。
我々のMatMulフリーモデルは、最大2.7Bパラメータでテストされ、最先端の事前訓練トランスに匹敵し、モデルサイズが大きくなるにつれて性能ギャップが狭まる。
GPU効率のよい実装は、トレーニング中に最大61%、推論時に最大10倍のメモリ消費を削減します。
マルチチップのニューロモーフィックシステムに適応すると、非同期処理を活用してエッジGPUの10倍のエネルギーで4倍高いスループットを実現する。
関連論文リスト
- Pangu Ultra MoE: How to Train Your Big MoE on Ascend NPUs [111.69640966866059]
ミキチャー・オブ・エキスパート(MoE)と1兆近いパラメータを持つ疎大言語モデル(LLM)が、最も有能な言語モデルの領域を支配している。
本稿では,Ascend NPU上でそのようなスケールを利用するレシピを明らかにすることを目的としている。
主な目的は、動的スパースモデル構造下でのコンピューティングリソースのより良い使用と、実際のハードウェアで期待されるパフォーマンス向上の実現である。
論文 参考訳(メタデータ) (2025-05-07T15:46:36Z) - CoLA: Compute-Efficient Pre-Training of LLMs via Low-Rank Activation [17.807249890437767]
我々は,CoLAとそのメモリ効率向上実装であるCoLA-Mを紹介する。
モデルアクティベーションにおいて広く観測される低ランク構造を利用して、モデルサイズを削減し、モデルのキャパシティを向上し、トレーニング効率を向上させる。
6000万から70億のパラメータを持つLLaMAモデルの実験では、CoLAはコンピューティングコストを$bf 2pmbtimes$で削減し、フルランクレベルのパフォーマンスを維持しながら、トレーニングスループットを$bf 1.86pmbtimes$で改善している。
論文 参考訳(メタデータ) (2025-02-16T01:05:16Z) - Democratizing AI: Open-source Scalable LLM Training on GPU-based Supercomputers [65.35142508909892]
AxoNNと呼ばれる,スケーラブルでポータブルなオープンソースフレームワークで実装された新しい4次元ハイブリッド並列アルゴリズムを提案する。
本稿では,Frontier 上で AxoNN を用いて405ビリオンパラメータ LLM の微調整を行う。
論文 参考訳(メタデータ) (2025-02-12T06:05:52Z) - Neuromorphic Principles for Efficient Large Language Models on Intel Loihi 2 [5.213433310722838]
大きな言語モデル(LLM)は優れたパフォーマンスを提供するが、大量のエネルギーを必要とする。
We present a MatMul-free LLM architecture with Intel's neuromorphic processor, Loihi 2。
当社のアプローチでは,ローヒ2の低精度,イベント駆動型計算,ステートフル処理のサポートを活用している。
論文 参考訳(メタデータ) (2025-02-12T02:40:44Z) - Memory Layers at Scale [67.00854080570979]
この研究はメモリ層を概念実証以上のものにし、現代の規模でその有用性を証明している。
ダウンストリームタスクでは、改善されたメモリ層で強化された言語モデルは、予算の2倍以上の高密度モデルよりも優れており、計算とパラメータの両方にマッチする場合の熟練モデルの混合も優れている。
最大128Bのメモリパラメータを持つスケーリング法則を1兆トークンまで事前訓練し,最大8Bパラメータを持つベースモデルと比較した,完全な並列化可能なメモリレイヤの実装を提供する。
論文 参考訳(メタデータ) (2024-12-12T23:56:57Z) - APOLLO: SGD-like Memory, AdamW-level Performance [61.53444035835778]
大規模言語モデル(LLM)は、トレーニング中にメモリ集約的であることで知られている。
メモリ使用量を減らすために、様々なメモリ効率のScalが提案されている。
i)コストのかかるSVDオペレーション、(ii)AdamWと比較して大きなパフォーマンストレードオフ、(iii)競争性能を維持する上でのメモリオーバーヘッド、などです。
論文 参考訳(メタデータ) (2024-12-06T18:55:34Z) - Ultra-Sparse Memory Network [8.927205198458994]
この研究はUltraMemを導入し、これらの制限に対処するために大規模な超スパースメモリ層を組み込んだ。
提案手法は,モデル性能を維持しながら推論遅延を大幅に低減する。
実験では、私たちがトレーニングする最大のUltraMemには2000万のメモリスロットがあります。
論文 参考訳(メタデータ) (2024-11-19T09:24:34Z) - Enabling High-Sparsity Foundational Llama Models with Efficient Pretraining and Deployment [56.44025052765861]
大規模言語モデル(LLM)は自然言語処理(NLP)に革命をもたらしたが、そのサイズは計算のボトルネックを生み出している。
そこで本研究では,高性能LLMの高精度かつ疎結合な基本バージョンを作成するための新しいアプローチを提案する。
スパース量子化LLaMAの最大8.6倍のCPU上での総高速化を示す。
論文 参考訳(メタデータ) (2024-05-06T16:03:32Z) - Dense Training, Sparse Inference: Rethinking Training of Mixture-of-Experts Language Models [62.4691912312317]
Mixture-of-Experts (MoE)言語モデルは、性能を犠牲にすることなく、高密度モデルと比較して計算コストを2~4ドル削減することができる。
本稿では,強力な計算とパラメータ効率を実現するMOEモデル(DS-MoE)のためのハイブリッド密集型トレーニングおよびスパース推論フレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-08T14:39:49Z) - The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits [129.6765656933016]
我々は1ビットのLarge Language Models (LLMs) 、すなわちBitNet b1.58を導入する。
1.58ビット LLM は、新しい世代の LLM を訓練するための新しいスケーリング法則とレシピを定義している。
これは新しいパラダイムを可能にし、1ビットLLM向けに最適化された特定のハードウェアを設計するための扉を開く。
論文 参考訳(メタデータ) (2024-02-27T18:56:19Z) - FinGPT-HPC: Efficient Pretraining and Finetuning Large Language Models
for Financial Applications with High-Performance Computing [10.47214968497857]
本稿では,低ランク構造を利用した大規模言語モデルの事前学習と微調整を行う高性能手法を提案する。
本手法は精度低下を伴わずに保持できる1.3Xの高速化と2.64Xのモデル圧縮比を実現する。
ファインタニングでは,一般タスクと財務タスクの平均精度が6.3%,24.0%向上した。
論文 参考訳(メタデータ) (2024-02-21T05:03:17Z) - Scaling Sparse Fine-Tuning to Large Language Models [67.59697720719672]
大きな言語モデル(LLM)は、パラメータの数が多いため、完全な微調整が難しい。
本研究では,パラメータの配列とパラメータのデルタを事前学習した値に対して保持する新しいスパース微調整法SpIELを提案する。
提案手法は,LoRAのようなパラメータ効率の高い微調整法よりも性能が優れ,実行時間も同等であることを示す。
論文 参考訳(メタデータ) (2024-01-29T18:43:49Z) - SliceGPT: Compress Large Language Models by Deleting Rows and Columns [27.004657436024853]
SliceGPTは,各重み行列をより小さい(高密度)行列に置き換え,ネットワークの埋め込み次元を小さくする,新しい学習後スペーシング方式である。
SliceGPT は LLAMA2-70B OPT 66B と Phi-2 のモデルパラメータの最大25% (埋め込みを含む) を,99%,99%,90% のゼロショットタスク性能を維持しながら除去可能であることを示す。
論文 参考訳(メタデータ) (2024-01-26T17:35:45Z) - FlightLLM: Efficient Large Language Model Inference with a Complete
Mapping Flow on FPGAs [23.381331567339526]
Transformer-based Large Language Models (LLMs) は様々な領域に多大な影響を与えている。
本稿では,FPGA上での完全なマッピングフローを用いて,効率的なLLM推論を実現するFlightLLMを提案する。
FlightLLMは最新のVersal VHK158 FPGAを使用して1.2$times$高スループットでNVIDIA A100 GPUを破る。
論文 参考訳(メタデータ) (2024-01-08T13:00:53Z) - Efficient LLM Inference on CPUs [8.802223672775844]
大規模言語モデル(LLM)は、幅広いタスクにおいて、顕著なパフォーマンスと大きなポテンシャルを示してきた。
これらのモデルのデプロイは、天文学的なモデルパラメータの量のために困難でした。
LLMのデプロイをより効率的にするための効果的なアプローチを提案する。
論文 参考訳(メタデータ) (2023-11-01T13:08:50Z) - FineQuant: Unlocking Efficiency with Fine-Grained Weight-Only
Quantization for LLMs [9.072821427818557]
大規模言語モデル(LLM)は、様々な言語タスクで最先端のパフォーマンスを達成しているが、実用的なデプロイメントには課題がある。
メモリ消費を削減し,LLMの推論を高速化する,効率的な重みのみの量子化法を提案する。
我々は,OPT-175Bや内部MoEモデルのような大規模オープンソースモデルに対するアプローチを評価し,スループットを最大3.65倍に向上しながら,最小限の精度の損失を示す。
論文 参考訳(メタデータ) (2023-08-16T23:57:41Z) - Full Parameter Fine-tuning for Large Language Models with Limited Resources [55.794732214059806]
大規模言語モデル(LLM)は自然言語処理(NLP)に革命をもたらしたが、トレーニングには大量のGPUリソースを必要としている。
我々は,メモリ使用量を削減するために,勾配とパラメータの更新を1ステップで融合する新しい計算,LOMO(LOw-Memory Optimization)を提案する。
論文 参考訳(メタデータ) (2023-06-16T11:37:15Z) - Fine-Tuning Language Models with Just Forward Passes [92.04219196752007]
微調整言語モデル(LM)は、様々な下流タスクで成功したが、LMのサイズが大きくなるにつれて、バックプロパゲーションは大量のメモリを必要とする。
本稿では,メモリ効率の高いゼロソーダ(MeZO)を提案する。
論文 参考訳(メタデータ) (2023-05-27T02:28:10Z) - LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale [80.86029795281922]
トランスにおけるフィードフォワードおよびアテンションプロジェクション層に対するInt8行列乗算法を開発した。
175Bパラメータ16/32ビットのチェックポイントをロードし、Int8に変換し、直ちに使用することができる。
論文 参考訳(メタデータ) (2022-08-15T17:08:50Z) - M6-10T: A Sharing-Delinking Paradigm for Efficient Multi-Trillion
Parameter Pretraining [55.16088793437898]
極端なモデルのトレーニングには大量の計算とメモリフットプリントが必要です。
本稿では,高メモリフットプリント要求大モデルのための簡単なトレーニング戦略"Pseudo-to-Real"を提案する。
論文 参考訳(メタデータ) (2021-10-08T04:24:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。