VHS: High-Resolution Iterative Stereo Matching with Visual Hull Priors
- URL: http://arxiv.org/abs/2406.02552v1
- Date: Tue, 4 Jun 2024 17:59:57 GMT
- Title: VHS: High-Resolution Iterative Stereo Matching with Visual Hull Priors
- Authors: Markus Plack, Hannah Dröge, Leif Van Holland, Matthias B. Hullin,
- Abstract summary: We present a stereo-matching method for depth estimation from high-resolution images using visual hulls as priors.
Our method uses object masks extracted from supplementary views of the scene to guide the disparity estimation, effectively reducing the search space for matches.
This approach is specifically tailored to stereo rigs in volumetric capture systems, where an accurate depth plays a key role in the downstream reconstruction task.
- Score: 3.523208537466128
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a stereo-matching method for depth estimation from high-resolution images using visual hulls as priors, and a memory-efficient technique for the correlation computation. Our method uses object masks extracted from supplementary views of the scene to guide the disparity estimation, effectively reducing the search space for matches. This approach is specifically tailored to stereo rigs in volumetric capture systems, where an accurate depth plays a key role in the downstream reconstruction task. To enable training and regression at high resolutions targeted by recent systems, our approach extends a sparse correlation computation into a hybrid sparse-dense scheme suitable for application in leading recurrent network architectures. We evaluate the performance-efficiency trade-off of our method compared to state-of-the-art methods, and demonstrate the efficacy of the visual hull guidance. In addition, we propose a training scheme for a further reduction of memory requirements during optimization, facilitating training on high-resolution data.
Related papers
- Learning Efficient and Effective Trajectories for Differential Equation-based Image Restoration [59.744840744491945]
We reformulate the trajectory optimization of this kind of method, focusing on enhancing both reconstruction quality and efficiency.
We propose cost-aware trajectory distillation to streamline complex paths into several manageable steps with adaptable sizes.
Experiments showcase the significant superiority of the proposed method, achieving a maximum PSNR improvement of 2.1 dB over state-of-the-art methods.
arXiv Detail & Related papers (2024-10-07T07:46:08Z) - Adaptive Anomaly Detection in Network Flows with Low-Rank Tensor Decompositions and Deep Unrolling [9.20186865054847]
Anomaly detection (AD) is increasingly recognized as a key component for ensuring the resilience of future communication systems.
This work considers AD in network flows using incomplete measurements.
We propose a novel block-successive convex approximation algorithm based on a regularized model-fitting objective.
Inspired by Bayesian approaches, we extend the model architecture to perform online adaptation to per-flow and per-time-step statistics.
arXiv Detail & Related papers (2024-09-17T19:59:57Z) - Efficient Human Vision Inspired Action Recognition using Adaptive
Spatiotemporal Sampling [13.427887784558168]
We introduce a novel adaptive vision system for efficient action recognition processing.
Our system pre-scans the global context sampling scheme at low-resolution and decides to skip or request high-resolution features at salient regions for further processing.
We validate the system on EPIC-KENS and UCF-101 datasets for action recognition, and show that our proposed approach can greatly speed up inference with a tolerable loss of accuracy compared with those from state-the-art baselines.
arXiv Detail & Related papers (2022-07-12T01:18:58Z) - Why-So-Deep: Towards Boosting Previously Trained Models for Visual Place
Recognition [12.807343105549409]
We present an intelligent method, MAQBOOL, to amplify the power of pre-trained models for better image recall.
We achieve comparable image retrieval results at a low descriptor dimension (512-D), compared to the high descriptor dimension (4096-D) of state-of-the-art methods.
arXiv Detail & Related papers (2022-01-10T08:39:06Z) - NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor
Multi-view Stereo [97.07453889070574]
We present a new multi-view depth estimation method that utilizes both conventional SfM reconstruction and learning-based priors.
We show that our proposed framework significantly outperforms state-of-the-art methods on indoor scenes.
arXiv Detail & Related papers (2021-09-02T17:54:31Z) - Deep Reparametrization of Multi-Frame Super-Resolution and Denoising [167.42453826365434]
We propose a deep reparametrization of the maximum a posteriori formulation commonly employed in multi-frame image restoration tasks.
Our approach is derived by introducing a learned error metric and a latent representation of the target image.
We validate our approach through comprehensive experiments on burst denoising and burst super-resolution datasets.
arXiv Detail & Related papers (2021-08-18T17:57:02Z) - An Adaptive Framework for Learning Unsupervised Depth Completion [59.17364202590475]
We present a method to infer a dense depth map from a color image and associated sparse depth measurements.
We show that regularization and co-visibility are related via the fitness of the model to data and can be unified into a single framework.
arXiv Detail & Related papers (2021-06-06T02:27:55Z) - LoRD-Net: Unfolded Deep Detection Network with Low-Resolution Receivers [104.01415343139901]
We propose a deep detector entitled LoRD-Net for recovering information symbols from one-bit measurements.
LoRD-Net has a task-based architecture dedicated to recovering the underlying signal of interest.
We evaluate the proposed receiver architecture for one-bit signal recovery in wireless communications.
arXiv Detail & Related papers (2021-02-05T04:26:05Z) - Feature space approximation for kernel-based supervised learning [2.653409741248232]
The goal is to reduce the size of the training data, resulting in lower storage consumption and computational complexity.
We demonstrate significant improvements in comparison to the computation of data-driven predictions involving the full training data set.
The method is applied to classification and regression problems from different application areas such as image recognition, system identification, and oceanographic time series analysis.
arXiv Detail & Related papers (2020-11-25T11:23:58Z) - Monocular Real-Time Volumetric Performance Capture [28.481131687883256]
We present the first approach to volumetric performance capture and novel-view rendering at real-time speed from monocular video.
Our system reconstructs a fully textured 3D human from each frame by leveraging Pixel-Aligned Implicit Function (PIFu)
We also introduce an Online Hard Example Mining (OHEM) technique that effectively suppresses failure modes due to the rare occurrence of challenging examples.
arXiv Detail & Related papers (2020-07-28T04:45:13Z) - ADRN: Attention-based Deep Residual Network for Hyperspectral Image
Denoising [52.01041506447195]
We propose an attention-based deep residual network to learn a mapping from noisy HSI to the clean one.
Experimental results demonstrate that our proposed ADRN scheme outperforms the state-of-the-art methods both in quantitative and visual evaluations.
arXiv Detail & Related papers (2020-03-04T08:36:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.