Is Data Valuation Learnable and Interpretable?
- URL: http://arxiv.org/abs/2406.02612v1
- Date: Mon, 3 Jun 2024 08:13:47 GMT
- Title: Is Data Valuation Learnable and Interpretable?
- Authors: Ou Wu, Weiyao Zhu, Mengyang Li,
- Abstract summary: Current data valuation methods ignore the interpretability of the output values.
This study aims to answer an important question: is data valuation learnable and interpretable?
- Score: 3.9325957466009203
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Measuring the value of individual samples is critical for many data-driven tasks, e.g., the training of a deep learning model. Recent literature witnesses the substantial efforts in developing data valuation methods. The primary data valuation methodology is based on the Shapley value from game theory, and various methods are proposed along this path. {Even though Shapley value-based valuation has solid theoretical basis, it is entirely an experiment-based approach and no valuation model has been constructed so far.} In addition, current data valuation methods ignore the interpretability of the output values, despite an interptable data valuation method is of great helpful for applications such as data pricing. This study aims to answer an important question: is data valuation learnable and interpretable? A learned valuation model have several desirable merits such as fixed number of parameters and knowledge reusability. An intrepretable data valuation model can explain why a sample is valuable or invaluable. To this end, two new data value modeling frameworks are proposed, in which a multi-layer perception~(MLP) and a new regression tree are utilized as specific base models for model training and interpretability, respectively. Extensive experiments are conducted on benchmark datasets. {The experimental results provide a positive answer for the question.} Our study opens up a new technical path for the assessing of data values. Large data valuation models can be built across many different data-driven tasks, which can promote the widespread application of data valuation.
Related papers
- Reframing Data Value for Large Language Models Through the Lens of Plausibility [6.697702130929693]
We propose an alternative perspective on the data value problem for language models.
We develop a novel value function that is computationally tractable and derived from first principles with provable properties.
arXiv Detail & Related papers (2024-08-30T22:32:24Z) - Neural Dynamic Data Valuation [4.286118155737111]
We propose a novel data valuation method from the perspective of optimal control, named the neural dynamic data valuation (NDDV)
Our method has solid theoretical interpretations to accurately identify the data valuation via the sensitivity of the data optimal control state.
In addition, we implement a data re-weighting strategy to capture the unique features of data points, ensuring fairness through the interaction between data points and the mean-field states.
arXiv Detail & Related papers (2024-04-30T13:39:26Z) - Distilled Datamodel with Reverse Gradient Matching [74.75248610868685]
We introduce an efficient framework for assessing data impact, comprising offline training and online evaluation stages.
Our proposed method achieves comparable model behavior evaluation while significantly speeding up the process compared to the direct retraining method.
arXiv Detail & Related papers (2024-04-22T09:16:14Z) - EcoVal: An Efficient Data Valuation Framework for Machine Learning [11.685518953430554]
Existing Shapley value based frameworks for data valuation in machine learning are computationally expensive.
We introduce an efficient data valuation framework EcoVal, to estimate the value of data for machine learning models in a fast and practical manner.
arXiv Detail & Related papers (2024-02-14T16:21:47Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
We propose QualEval, which augments quantitative scalar metrics with automated qualitative evaluation as a vehicle for model improvement.
QualEval uses a powerful LLM reasoner and our novel flexible linear programming solver to generate human-readable insights.
We demonstrate that leveraging its insights, for example, improves the absolute performance of the Llama 2 model by up to 15% points relative.
arXiv Detail & Related papers (2023-11-06T00:21:44Z) - On the Evaluation and Refinement of Vision-Language Instruction Tuning
Datasets [71.54954966652286]
We try to evaluate the Vision-Language Instruction-Tuning (VLIT) datasets.
We build a new dataset, REVO-LION, by collecting samples with higher SQ from each dataset.
Remarkably, even with only half of the complete data, the model trained on REVO-LION can achieve the performance comparable to simply adding all VLIT datasets up.
arXiv Detail & Related papers (2023-10-10T13:01:38Z) - FLASK: Fine-grained Language Model Evaluation based on Alignment Skill Sets [69.91340332545094]
We introduce FLASK, a fine-grained evaluation protocol for both human-based and model-based evaluation.
We experimentally observe that the fine-graininess of evaluation is crucial for attaining a holistic view of model performance.
arXiv Detail & Related papers (2023-07-20T14:56:35Z) - GMValuator: Similarity-based Data Valuation for Generative Models [41.76259565672285]
We introduce Generative Model Valuator (GMValuator), the first training-free and model-agnostic approach to provide data valuation for generation tasks.
GMValuator is extensively evaluated on various datasets and generative architectures to demonstrate its effectiveness.
arXiv Detail & Related papers (2023-04-21T02:02:02Z) - Data-OOB: Out-of-bag Estimate as a Simple and Efficient Data Value [17.340091573913316]
We propose Data-OOB, a new data valuation method for a bagging model that utilizes the out-of-bag estimate.
Data-OOB takes less than 2.25 hours on a single CPU processor when there are $106$ samples to evaluate and the input dimension is 100.
We demonstrate that the proposed method significantly outperforms existing state-of-the-art data valuation methods in identifying mislabeled data and finding a set of helpful (or harmful) data points.
arXiv Detail & Related papers (2023-04-16T08:03:58Z) - Learning to be a Statistician: Learned Estimator for Number of Distinct
Values [54.629042119819744]
Estimating the number of distinct values (NDV) in a column is useful for many tasks in database systems.
In this work, we focus on how to derive accurate NDV estimations from random (online/offline) samples.
We propose to formulate the NDV estimation task in a supervised learning framework, and aim to learn a model as the estimator.
arXiv Detail & Related papers (2022-02-06T15:42:04Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
We propose a novel framework to efficiently test a machine learning model using only a small amount of labeled test data.
The idea is to estimate the metrics of interest for a model-under-test using Bayesian neural network (BNN)
arXiv Detail & Related papers (2021-04-11T12:14:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.