論文の概要: SSNet: A Lightweight Multi-Party Computation Scheme for Practical Privacy-Preserving Machine Learning Service in the Cloud
- arxiv url: http://arxiv.org/abs/2406.02629v1
- Date: Tue, 4 Jun 2024 00:55:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 23:29:51.857302
- Title: SSNet: A Lightweight Multi-Party Computation Scheme for Practical Privacy-Preserving Machine Learning Service in the Cloud
- Title(参考訳): SSNet:クラウド上の実用的なプライバシ保護機械学習サービスのための軽量マルチパーティ計算スキーム
- Authors: Shijin Duan, Chenghong Wang, Hongwu Peng, Yukui Luo, Wujie Wen, Caiwen Ding, Xiaolin Xu,
- Abstract要約: MPCベースのMLフレームワークのバックボーンとして,Shamirの秘密共有(SSS)を初めて採用したSSNetを提案する。
SSNetは、パーティ番号を簡単にスケールアップする機能を示し、計算の正しさを認証するための戦略を組み込む。
当社は,Amazon AWSによる商用クラウドコンピューティングインフラストラクチャに関する総合的な実験的評価を実施している。
- 参考スコア(独自算出の注目度): 17.961150835215587
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As privacy-preserving becomes a pivotal aspect of deep learning (DL) development, multi-party computation (MPC) has gained prominence for its efficiency and strong security. However, the practice of current MPC frameworks is limited, especially when dealing with large neural networks, exemplified by the prolonged execution time of 25.8 seconds for secure inference on ResNet-152. The primary challenge lies in the reliance of current MPC approaches on additive secret sharing, which incurs significant communication overhead with non-linear operations such as comparisons. Furthermore, additive sharing suffers from poor scalability on party size. In contrast, the evolving landscape of MPC necessitates accommodating a larger number of compute parties and ensuring robust performance against malicious activities or computational failures. In light of these challenges, we propose SSNet, which for the first time, employs Shamir's secret sharing (SSS) as the backbone of MPC-based ML framework. We meticulously develop all framework primitives and operations for secure DL models tailored to seamlessly integrate with the SSS scheme. SSNet demonstrates the ability to scale up party numbers straightforwardly and embeds strategies to authenticate the computation correctness without incurring significant performance overhead. Additionally, SSNet introduces masking strategies designed to reduce communication overhead associated with non-linear operations. We conduct comprehensive experimental evaluations on commercial cloud computing infrastructure from Amazon AWS, as well as across diverse prevalent DNN models and datasets. SSNet demonstrates a substantial performance boost, achieving speed-ups ranging from 3x to 14x compared to SOTA MPC frameworks. Moreover, SSNet also represents the first framework that is evaluated on a five-party computation setup, in the context of secure DL inference.
- Abstract(参考訳): プライバシー保護がディープラーニング(DL)開発の重要な側面となるにつれ、マルチパーティ計算(MPC)はその効率性と強力なセキュリティで注目されている。
しかし、現在のMPCフレームワークの実践は制限されており、特に大規模なニューラルネットワークを扱う場合、ResNet-152上のセキュアな推論のために25.8秒の長時間実行時間で例示される。
主な課題は、既存のMPCアプローチが追加的な秘密共有に依存していることであり、これは比較のような非線形操作とかなりの通信オーバーヘッドを引き起こす。
さらに、追加的な共有は、パーティサイズにおけるスケーラビリティの低下に悩まされる。
対照的に、MPCの進化する状況は、より多くの計算パーティを収容し、悪意のあるアクティビティや計算障害に対して堅牢なパフォーマンスを確保する必要がある。
これらの課題を踏まえ、我々は初めてShamirの秘密共有(SSS)をMPCベースのMLフレームワークのバックボーンとして採用するSSNetを提案する。
セキュアなDLモデルのためのフレームワークプリミティブと操作を慎重に開発し、SSSスキームとシームレスに統合する。
SSNetは、パーティ番号を簡単にスケールアップする機能を示し、パフォーマンス上の大きなオーバーヘッドを発生させることなく、計算の正しさを認証するための戦略を組み込む。
さらに、SSNetは非線形操作に関連する通信オーバーヘッドを低減するために設計されたマスキング戦略を導入した。
私たちは、Amazon AWSの商用クラウドコンピューティングインフラストラクチャに関する包括的な実験的な評価を行い、さまざまなDNNモデルとデータセットを提供しています。
SSNetは、SOTA MPCフレームワークと比較して3倍から14倍のスピードアップを実現している。
さらに、SSNetは、セキュアなDL推論の文脈において、5パーティの計算設定で評価される最初のフレームワークでもある。
関連論文リスト
- The Communication-Friendly Privacy-Preserving Machine Learning against Malicious Adversaries [14.232901861974819]
プライバシー保護機械学習(PPML)は、機密情報を保護しながらセキュアなデータ分析を可能にする革新的なアプローチである。
セキュアな線形関数評価のための効率的なプロトコルを導入する。
我々は、このプロトコルを拡張して、線形層と非線形層を扱い、幅広い機械学習モデルとの互換性を確保する。
論文 参考訳(メタデータ) (2024-11-14T08:55:14Z) - Digital Twin-Assisted Data-Driven Optimization for Reliable Edge Caching in Wireless Networks [60.54852710216738]
我々はD-RECと呼ばれる新しいデジタルツインアシスト最適化フレームワークを導入し、次世代無線ネットワークにおける信頼性の高いキャッシュを実現する。
信頼性モジュールを制約付き決定プロセスに組み込むことで、D-RECは、有利な制約に従うために、アクション、報酬、状態を適応的に調整することができる。
論文 参考訳(メタデータ) (2024-06-29T02:40:28Z) - RigorLLM: Resilient Guardrails for Large Language Models against Undesired Content [62.685566387625975]
現在の緩和戦略は効果はあるものの、敵の攻撃下では弾力性がない。
本稿では,大規模言語モデルのための弾力性ガードレール(RigorLLM)について紹介する。
論文 参考訳(メタデータ) (2024-03-19T07:25:02Z) - MirrorNet: A TEE-Friendly Framework for Secure On-device DNN Inference [14.08010398777227]
ディープニューラルネットワーク(DNN)モデルは、リアルタイム推論のためのエッジデバイスで普及している。
既存の防御アプローチでは、モデルの機密性を完全に保護できないか、あるいは重大なレイテンシの問題が発生する。
本稿では、モデル機密性を保護するため、任意のDNNモデルに対してTEEフレンドリーな実装を生成するMirrorNetを提案する。
評価のために、MirrorNetは認証と違法使用の間に18.6%の精度差を達成でき、ハードウェアオーバーヘッドは0.99%に過ぎなかった。
論文 参考訳(メタデータ) (2023-11-16T01:21:19Z) - RRNet: Towards ReLU-Reduced Neural Network for Two-party Computation
Based Private Inference [17.299835585861747]
本稿では,MPC比較プロトコルのオーバーヘッドを減らし,ハードウェアアクセラレーションによる計算を高速化するフレームワークRRNetを紹介する。
提案手法は,暗号ビルディングブロックのハードウェア遅延をDNN損失関数に統合し,エネルギー効率,精度,セキュリティ保証を改善する。
論文 参考訳(メタデータ) (2023-02-05T04:02:13Z) - PolyMPCNet: Towards ReLU-free Neural Architecture Search in Two-party
Computation Based Private Inference [23.795457990555878]
プライバシー保護型ディープラーニング(DL)計算を可能にするために,セキュアなマルチパーティ計算(MPC)が議論されている。
MPCは計算オーバーヘッドが非常に高く、大規模システムではその人気を阻害する可能性がある。
本研究では,MPC比較プロトコルとハードウェアアクセラレーションの協調オーバーヘッド削減のための,PolyMPCNetという体系的なフレームワークを開発する。
論文 参考訳(メタデータ) (2022-09-20T02:47:37Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
高次元パラメータモデルと大規模数学的計算は、特にIoT(Internet of Things)デバイスにおける実行効率を制限する。
本稿では,ソフトポリシーの繰り返しによるエフェキシット点,エフェキシット点,エンフェキシット点を生成する離散的(SAC-d)のための新しい深層強化学習(DRL)-ソフトアクタ批判法を提案する。
レイテンシと精度を意識した報酬設計に基づいて、そのような計算は動的無線チャンネルや任意の処理のような複雑な環境によく適応でき、5G URLをサポートすることができる。
論文 参考訳(メタデータ) (2022-01-09T09:31:50Z) - MPCLeague: Robust MPC Platform for Privacy-Preserving Machine Learning [5.203329540700177]
この論文は、2、3、4パーティで効率的なMPCフレームワークを設計することに焦点を当て、少なくとも1つの汚職とリング構造をサポートする。
それぞれのフレームワークに対して2つのバリエーションを提案し、一方は実行時間を最小化し、もう一方は金銭的コストに焦点を当てる。
論文 参考訳(メタデータ) (2021-12-26T09:25:32Z) - Distributed Reinforcement Learning for Privacy-Preserving Dynamic Edge
Caching [91.50631418179331]
MECネットワークにおけるデバイスのキャッシュヒット率を最大化するために,プライバシ保護型分散ディープポリシー勾配(P2D3PG)を提案する。
分散最適化をモデルフリーなマルコフ決定プロセス問題に変換し、人気予測のためのプライバシー保護フェデレーション学習手法を導入する。
論文 参考訳(メタデータ) (2021-10-20T02:48:27Z) - Multi-Exit Semantic Segmentation Networks [78.44441236864057]
本稿では,最先端セグメンテーションモデルをMESSネットワークに変換するフレームワークを提案する。
パラメトリド早期出口を用いた特別訓練されたCNNは、より簡単なサンプルの推測時に、その深さに沿って保存する。
接続されたセグメンテーションヘッドの数、配置、アーキテクチャとエグジットポリシーを併用して、デバイス機能とアプリケーション固有の要件に適応する。
論文 参考訳(メタデータ) (2021-06-07T11:37:03Z) - CryptoSPN: Privacy-preserving Sum-Product Network Inference [84.88362774693914]
総生産ネットワーク(SPN)のプライバシ保護のためのフレームワークを提案する。
CryptoSPNは、中規模のSPNに対して秒の順序で高効率で正確な推論を行う。
論文 参考訳(メタデータ) (2020-02-03T14:49:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。