論文の概要: Strengthening Network Intrusion Detection in IoT Environments with Self-Supervised Learning and Few Shot Learning
- arxiv url: http://arxiv.org/abs/2406.02636v1
- Date: Tue, 4 Jun 2024 06:30:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 23:19:06.919109
- Title: Strengthening Network Intrusion Detection in IoT Environments with Self-Supervised Learning and Few Shot Learning
- Title(参考訳): 自己監督学習とほとんどショット学習によるIoT環境におけるネットワーク侵入検出の強化
- Authors: Safa Ben Atitallah, Maha Driss, Wadii Boulila, Anis Koubaa,
- Abstract要約: IoT(Internet of Things)は、インテリジェンスを日常のオブジェクトに統合するブレークスルー技術として紹介されている。
IoTネットワークが拡大し、拡大するにつれ、サイバーセキュリティ攻撃の影響を受けやすくなっている。
本稿では,これらの課題に対処する新しい侵入検知手法を提案する。
- 参考スコア(独自算出の注目度): 1.0678175996321808
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Internet of Things (IoT) has been introduced as a breakthrough technology that integrates intelligence into everyday objects, enabling high levels of connectivity between them. As the IoT networks grow and expand, they become more susceptible to cybersecurity attacks. A significant challenge in current intrusion detection systems for IoT includes handling imbalanced datasets where labeled data are scarce, particularly for new and rare types of cyber attacks. Existing literature often fails to detect such underrepresented attack classes. This paper introduces a novel intrusion detection approach designed to address these challenges. By integrating Self Supervised Learning (SSL), Few Shot Learning (FSL), and Random Forest (RF), our approach excels in learning from limited and imbalanced data and enhancing detection capabilities. The approach starts with a Deep Infomax model trained to extract key features from the dataset. These features are then fed into a prototypical network to generate discriminate embedding. Subsequently, an RF classifier is employed to detect and classify potential malware, including a range of attacks that are frequently observed in IoT networks. The proposed approach was evaluated through two different datasets, MaleVis and WSN-DS, which demonstrate its superior performance with accuracies of 98.60% and 99.56%, precisions of 98.79% and 99.56%, recalls of 98.60% and 99.56%, and F1-scores of 98.63% and 99.56%, respectively.
- Abstract(参考訳): IoT(Internet of Things)は、インテリジェンスを日常のオブジェクトに統合し、それら間の高レベルの接続を可能にするブレークスルー技術として導入された。
IoTネットワークが拡大し、拡大するにつれ、サイバーセキュリティ攻撃の影響を受けやすくなっている。
IoTの現在の侵入検知システムにおける重要な課題は、ラベル付きデータが不足している不均衡なデータセットの処理である。
既存の文献は、しばしばそのような未表現の攻撃クラスを検出するのに失敗する。
本稿では,これらの課題に対処する新しい侵入検知手法を提案する。
Self Supervised Learning(SSL)、Few Shot Learning(FSL)、Random Forest(RF)を統合することで、制限された不均衡なデータからの学習と検出能力の向上に長けています。
このアプローチは、データセットから重要な機能を抽出するようにトレーニングされたDeep Infomaxモデルから始まる。
これらの特徴は、識別埋め込みを生成するために、プロトタイプネットワークに入力される。
その後、RF分類器を使用して、IoTネットワークで頻繁に見られる攻撃を含む潜在的なマルウェアを検出し、分類する。
提案手法はMaleVisとWSN-DSの2つの異なるデータセットを用いて評価され、98.60%と99.56%の精度、98.79%と99.56%の精度、98.60%と99.56%のリコール、98.63%と99.56%のF1スコアでそれぞれ優れた性能を示した。
関連論文リスト
- FedMSE: Federated learning for IoT network intrusion detection [0.0]
IoTの台頭によりサイバー攻撃面が拡大し、データ可用性、計算リソース、転送コスト、特にプライバシ保護に関する懸念から、従来の集中型機械学習手法が不十分になった。
Shrink AutoencoderとCentroid One-class Classifier(SAE-CEN)を組み合わせた半教師付きフェデレーション学習モデルを開発した。
このアプローチは,通常のネットワークデータを効果的に表現し,分散戦略における異常を正確に識別することにより侵入検知性能を向上させる。
論文 参考訳(メタデータ) (2024-10-18T02:23:57Z) - Lightweight CNN-BiLSTM based Intrusion Detection Systems for Resource-Constrained IoT Devices [38.16309790239142]
侵入検知システム(IDS)は、従来のコンピュータシステムにおけるサイバー攻撃の検出と防止に重要な役割を果たしてきた。
Internet of Things(IoT)デバイスで利用可能な限られた計算リソースは、従来のコンピューティングベースのIDSのデプロイを困難にしている。
軽量CNNと双方向LSTM(BiLSTM)を組み合わせたハイブリッドCNNアーキテクチャを提案し,UNSW-NB15データセット上でのIDSの性能向上を図る。
論文 参考訳(メタデータ) (2024-06-04T20:36:21Z) - Enhancing IoT Security with CNN and LSTM-Based Intrusion Detection Systems [0.23408308015481666]
提案モデルは,畳み込みニューラルネットワーク(CNN)と長短期記憶(LSTM)ディープラーニング(DL)モデルを組み合わせて構成する。
この融合により、IoTトラフィックをバイナリカテゴリ、良性、悪意のあるアクティビティに検出し、分類することが可能になる。
提案モデルの精度は98.42%,最小損失は0.0275である。
論文 参考訳(メタデータ) (2024-05-28T22:12:15Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Machine learning-based network intrusion detection for big and
imbalanced data using oversampling, stacking feature embedding and feature
extraction [6.374540518226326]
侵入検知システム(IDS)は、悪意あるアクターや活動を検出することによって相互接続ネットワークを保護する上で重要な役割を果たす。
本稿では,データ不均衡にRandom Oversampling (RO) を用いる新しいMLベースのネットワーク侵入検出モデルと,次元削減のためのStacking Feature Embedding (PCA)を提案する。
CIC-IDS 2017データセットを使用すると、DT、RF、ETモデルは99.99%の精度に達し、DTとRFモデルはCIC-IDS 2018データセットで99.94%の精度が得られる。
論文 参考訳(メタデータ) (2024-01-22T05:49:41Z) - Effective Intrusion Detection in Highly Imbalanced IoT Networks with
Lightweight S2CGAN-IDS [48.353590166168686]
モノのインターネット(IoT)ネットワークは、異常なトラフィックよりも遥かに良質なトラフィックを含んでいる。
既存研究の多くは、少数民族の検出率を向上させるために、多数民族の検出率を犠牲にすることに焦点を当てている。
我々はS2CGAN-IDSという軽量なフレームワークを提案し、データ空間と特徴空間の両方においてマイノリティなカテゴリの数を拡大する。
論文 参考訳(メタデータ) (2023-06-06T14:19:23Z) - Poisoning Attacks in Federated Edge Learning for Digital Twin 6G-enabled
IoTs: An Anticipatory Study [37.97034388920841]
フェデレーションエッジ学習は、デジタルツインの6G対応モノのインターネット(IoT)環境において、プライバシ保護、人工知能(AI)対応のアクティビティをサポートする上で不可欠である。
本稿では,デジタル双対6G対応IoT環境におけるフェデレーションエッジ学習における中毒攻撃の予測研究を提案する。
論文 参考訳(メタデータ) (2023-03-21T11:12:17Z) - Deep Neural Networks based Meta-Learning for Network Intrusion Detection [0.24466725954625884]
産業の異なるコンポーネントのデジタル化と先住民ネットワーク間の相互接続性は、ネットワーク攻撃のリスクを高めている。
コンピュータネットワークの予測モデルを構築するために使用されるデータには、スキュークラス分布と攻撃型の限定表現がある。
Information Fusion and Stacking Ensemble (INFUSE) という,ネットワーク侵入検出のための新しいディープニューラルネットワークベースのメタラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-18T18:00:05Z) - Towards Reducing Labeling Cost in Deep Object Detection [61.010693873330446]
本稿では,検知器の不確実性と頑健性の両方を考慮した,アクティブラーニングのための統一的なフレームワークを提案する。
提案手法は, 確率分布のドリフトを抑えながら, 極めて確実な予測を擬似ラベル化することができる。
論文 参考訳(メタデータ) (2021-06-22T16:53:09Z) - Automated Identification of Vulnerable Devices in Networks using Traffic
Data and Deep Learning [30.536369182792516]
脆弱性データベースのデータと組み合わせたデバイスタイプの識別は、ネットワーク内の脆弱なiotデバイスを特定できる。
信頼性の高いIoTデバイスタイプ識別のための2つの深層学習手法を提案し,評価する。
論文 参考訳(メタデータ) (2021-02-16T14:49:34Z) - A cognitive based Intrusion detection system [0.0]
侵入検知は、コンピュータネットワークのセキュリティを提供する重要なメカニズムの1つである。
本稿では,Deep Neural Network Ans Supportctor Machine Classifierに基づく新しい手法を提案する。
提案手法は, 侵入検知に類似した手法により, より精度良く攻撃を予測できる。
論文 参考訳(メタデータ) (2020-05-19T13:30:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。