論文の概要: Maintaining Diversity Provably Helps in Evolutionary Multimodal Optimization
- arxiv url: http://arxiv.org/abs/2406.02658v1
- Date: Tue, 4 Jun 2024 17:52:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 23:08:11.277864
- Title: Maintaining Diversity Provably Helps in Evolutionary Multimodal Optimization
- Title(参考訳): 進化的マルチモーダル最適化における多様性の維持
- Authors: Shengjie Ren, Zhijia Qiu, Chao Bian, Miqing Li, Chao Qian,
- Abstract要約: 解空間における解の多様性を考慮に入れた簡単な方法が進化的アルゴリズム(EA)の探索に有効であることを示す。
提案手法は,クロスオーバーで作業することで探索の促進に寄与し,予測走行時間において,マルチモーダルあるいは指数加速度がもたらされることを実証する。
- 参考スコア(独自算出の注目度): 20.621635722585502
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the real world, there exist a class of optimization problems that multiple (local) optimal solutions in the solution space correspond to a single point in the objective space. In this paper, we theoretically show that for such multimodal problems, a simple method that considers the diversity of solutions in the solution space can benefit the search in evolutionary algorithms (EAs). Specifically, we prove that the proposed method, working with crossover, can help enhance the exploration, leading to polynomial or even exponential acceleration on the expected running time. This result is derived by rigorous running time analysis in both single-objective and multi-objective scenarios, including $(\mu+1)$-GA solving the widely studied single-objective problem, Jump, and NSGA-II and SMS-EMOA (two well-established multi-objective EAs) solving the widely studied bi-objective problem, OneJumpZeroJump. Experiments are also conducted to validate the theoretical results. We hope that our results may encourage the exploration of diversity maintenance in the solution space for multi-objective optimization, where existing EAs usually only consider the diversity in the objective space and can easily be trapped in local optima.
- Abstract(参考訳): 実世界では、解空間における複数の(局所的な)最適解が対象空間の単一点に対応するような最適化問題のクラスが存在する。
本稿では,このようなマルチモーダル問題に対して,解空間における解の多様性を考慮した簡単な手法が進化的アルゴリズム(EA)の探索に有効であることを理論的に示す。
具体的には,クロスオーバーを用いた提案手法が探索の促進に有効であることを証明し,予測走行時間における多項式や指数加速度に繋がることを示した。
この結果は、広範に研究されている単目的問題であるJumpとNSGA-IIを解く$(\mu+1)$-GAや、広く研究されている二目的問題であるOneJumpZeroJumpを解くSMS-EMOA(2つの確立された多目的EA)を含む、単目的および多目的シナリオの厳密な実行時間解析によって導かれる。
理論的結果を検証する実験も行われている。
我々は,既存EAが通常,目的空間の多様性のみを考慮し,局所的最適性に陥りやすいような,多目的最適化のためのソリューション空間における多様性維持の探索を促進することを期待する。
関連論文リスト
- UCB-driven Utility Function Search for Multi-objective Reinforcement Learning [75.11267478778295]
マルチオブジェクト強化学習(MORL)エージェントでは、意思決定行動の最適化を行う。
重みベクトル w でパラメータ化される線型効用関数の場合に焦点を当てる。
学習過程の異なる段階で最も有望な重みベクトルを効率的に探索する上信頼境界に基づく手法を提案する。
論文 参考訳(メタデータ) (2024-05-01T09:34:42Z) - Achieving Diversity in Objective Space for Sample-efficient Search of
Multiobjective Optimization Problems [4.732915763557618]
本稿では,LMS 取得機能を導入し,その挙動と特性を解析し,その実現可能性を示す。
この手法は、意思決定者に対して、将来性のある設計決定の堅牢なプールを提供し、優れたソリューションの空間をよりよく理解するのに役立つ。
論文 参考訳(メタデータ) (2023-06-23T20:42:22Z) - Multi-Objective GFlowNets [59.16787189214784]
本稿では,多目的最適化の文脈において,多様な候補を生成する問題について検討する。
薬物発見やマテリアルデザインといった機械学習の多くの応用において、目標は、競合する可能性のある目標のセットを同時に最適化する候補を生成することである。
GFlowNetsをベースとした多目的GFlowNets(MOGFNs)を提案する。
論文 参考訳(メタデータ) (2022-10-23T16:15:36Z) - Multi-Objective Quality Diversity Optimization [2.4608515808275455]
MOME(Multi-Objective MAP-Elites)の多目的設定におけるMAP-Elitesアルゴリズムの拡張を提案する。
すなわち、MAP-Elitesグリッドアルゴリズムから受け継いだ多様性と、多目的最適化の強みを組み合わせる。
本手法は,標準的な最適化問題からロボットシミュレーションまで,いくつかのタスクで評価する。
論文 参考訳(メタデータ) (2022-02-07T10:48:28Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
非家族問題における近位演算子を学習するためのエンドツーエンド手法を提案する。
本手法は,弱い目的と穏やかな条件下では,世界規模で収束することを示す。
論文 参考訳(メタデータ) (2022-01-28T05:53:28Z) - Result Diversification by Multi-objective Evolutionary Algorithms with
Theoretical Guarantees [94.72461292387146]
両目的探索問題として結果の多様化問題を再構成し,多目的進化アルゴリズム(EA)を用いて解くことを提案する。
GSEMOが最適時間近似比1/2$を達成できることを理論的に証明する。
目的関数が動的に変化すると、GSEMOはこの近似比をランニングタイムで維持することができ、Borodinらによって提案されたオープンな問題に対処する。
論文 参考訳(メタデータ) (2021-10-18T14:00:22Z) - Runtime Analysis of Single- and Multi-Objective Evolutionary Algorithms for Chance Constrained Optimization Problems with Normally Distributed Random Variables [11.310502327308575]
独立して通常は分散しているコンポーネントのシナリオについて研究する。
期待されるコストとその分散をトレードオフする問題を多目的に定式化する。
また,本手法は,木に散らばった最小限の問題に対して最適解の集合を計算するためにも有効であることを示す。
論文 参考訳(メタデータ) (2021-09-13T09:24:23Z) - An Analysis of Phenotypic Diversity in Multi-Solution Optimization [118.97353274202749]
マルチモーダル最適化は高い適合性ソリューションを生み出し、品質の多様性は遺伝的中立性に敏感ではない。
オートエンコーダは表現型特徴を自動的に発見するために使用され、品質の多様性を備えたさらに多様なソリューションセットを生成する。
論文 参考訳(メタデータ) (2021-05-10T10:39:03Z) - Niching Diversity Estimation for Multi-modal Multi-objective
Optimization [9.584279193016522]
ニッチは進化的多目的最適化において重要かつ広く用いられている手法である。
MMOPでは、対象空間の解は決定空間に複数の逆像を持つことができ、これは等価解と呼ばれる。
MMOPの処理において、標準多様性推定器をより効率的にするために、一般的なニチング機構を提案する。
論文 参考訳(メタデータ) (2021-01-31T05:23:31Z) - Hybrid Adaptive Evolutionary Algorithm for Multi-objective Optimization [0.0]
本稿では、MoHAEAと呼ばれるハイブリッド適応進化アルゴリズム(HAEA)の拡張として、新しい多目的アルゴリズムを提案する。
MoHAEAは、MOEA/D、pa$lambda$-MOEA/D、MOEA/D-AWA、NSGA-IIの4つの状態と比較される。
論文 参考訳(メタデータ) (2020-04-29T02:16:49Z) - Pareto Multi-Task Learning [53.90732663046125]
マルチタスク学習は複数の相関タスクを同時に解くための強力な方法である。
異なるタスクが互いに衝突する可能性があるため、すべてのタスクを最適化するひとつのソリューションを見つけることは、しばしば不可能である。
近年,マルチタスク学習を多目的最適化として活用することにより,タスク間のトレードオフが良好である1つのパレート最適解を求める方法が提案されている。
論文 参考訳(メタデータ) (2019-12-30T08:58:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。