論文の概要: Symmetric Kernels with Non-Symmetric Data: A Data-Agnostic Learnability Bound
- arxiv url: http://arxiv.org/abs/2406.02663v1
- Date: Tue, 4 Jun 2024 18:00:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 23:08:11.271223
- Title: Symmetric Kernels with Non-Symmetric Data: A Data-Agnostic Learnability Bound
- Title(参考訳): 非対称データを用いた対称カーネル:データに依存しない学習性境界
- Authors: Itay Lavie, Zohar Ringel,
- Abstract要約: カーネルリッジ回帰(KRR)とガウス過程(GP)は統計学と機械学習の基本的なツールである。
これらのツールがターゲット関数を学習する能力は、入力データ上にサンプリングされたカーネルの固有値に直接関係している。
本稿では,この共通ルアーとは対照的に,実データに有界な学習性を示すために,高度に理想化されたデータ尺度に付随する固有値と固有関数を用いることを示す。
- 参考スコア(独自算出の注目度): 2.3020018305241337
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Kernel ridge regression (KRR) and Gaussian processes (GPs) are fundamental tools in statistics and machine learning with recent applications to highly over-parameterized deep neural networks. The ability of these tools to learn a target function is directly related to the eigenvalues of their kernel sampled on the input data. Targets having support on higher eigenvalues are more learnable. While kernels are often highly symmetric objects, the data is often not. Thus kernel symmetry seems to have little to no bearing on the above eigenvalues or learnability, making spectral analysis on real-world data challenging. Here, we show that contrary to this common lure, one may use eigenvalues and eigenfunctions associated with highly idealized data-measures to bound learnability on realistic data. As a demonstration, we give a theoretical lower bound on the sample complexity of copying heads for kernels associated with generic transformers acting on natural language.
- Abstract(参考訳): カーネルリッジ回帰(KRR)とガウス過程(GP)は統計学と機械学習の基本的なツールであり、近年の高度にパラメータ化された深層ニューラルネットワークへの応用がある。
これらのツールがターゲット関数を学習する能力は、入力データ上にサンプリングされたカーネルの固有値に直接関係している。
高い固有値をサポートするターゲットは、より学習しやすい。
カーネルはしばしば高度に対称なオブジェクトであるが、データはしばしばそうではない。
したがって、カーネル対称性は上記の固有値や学習可能性にほとんど依存していないようで、実世界のデータに対するスペクトル分析は困難である。
ここでは、この一般的なルアーとは対照的に、高度に理想化されたデータ尺度に付随する固有値と固有関数を用いて、現実的なデータに学習可能性を持つことを示す。
実演として、自然言語に作用するジェネリックトランスフォーマーに関連するカーネルのヘッドのコピーの複雑さを理論的に低くする。
関連論文リスト
- Meta-Statistical Learning: Supervised Learning of Statistical Inference [59.463430294611626]
この研究は、大きな言語モデル(LLM)の成功を駆動するツールと原則が、分散レベルのタスクに取り組むために再利用可能であることを実証している。
本稿では,統計的推論タスクを教師付き学習問題として再構成するマルチインスタンス学習に触発されたメタ統計学習を提案する。
論文 参考訳(メタデータ) (2025-02-17T18:04:39Z) - SMaRt: Improving GANs with Score Matching Regularity [94.81046452865583]
生成的敵ネットワーク(GAN)は通常、基礎となる多様体が複雑である非常に多様なデータから学ぶのに苦労する。
スコアマッチングは、生成したデータポイントを実データ多様体へ持続的にプッシュする能力のおかげで、この問題に対する有望な解決策であることを示す。
スコアマッチング規則性(SMaRt)を用いたGANの最適化を提案する。
論文 参考訳(メタデータ) (2023-11-30T03:05:14Z) - Manifold Learning with Sparse Regularised Optimal Transport [1.949927790632678]
実世界のデータセットはノイズの多い観測とサンプリングを受けており、基礎となる多様体に関する情報を蒸留することが大きな課題である。
本稿では,2次正規化を用いた最適輸送の対称版を利用する多様体学習法を提案する。
得られたカーネルは連続的な極限においてLaplace型演算子と整合性を証明し、ヘテロスケダスティックノイズに対する堅牢性を確立し、これらの結果を数値実験で示す。
論文 参考訳(メタデータ) (2023-07-19T08:05:46Z) - The Underlying Scaling Laws and Universal Statistical Structure of Complex Datasets [2.07180164747172]
実世界の複雑なデータセットと人工的に生成されたデータセットの両方に現れる普遍的特性について検討する。
我々のアプローチは、データを物理系に類似させ、統計物理学やランダム行列理論(RMT)のツールを用いて、その基盤となる構造を明らかにすることである。
論文 参考訳(メタデータ) (2023-06-26T18:01:47Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
異なるスコアに基づく因果探索法は観測データから有向非巡回グラフを学習する。
本稿では,Reweighted Score関数ReScoreの適応重みを動的に学習することにより因果発見性能を向上させるためのモデルに依存しないフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-06T14:49:59Z) - Does the Data Induce Capacity Control in Deep Learning? [0.0]
本稿では,データセットがディープネットワークの異常一般化性能の原因である可能性について検討する。
典型的な分類データセットのデータ相関行列は、急激な初期降下の後、指数関数的に広い範囲で多数の小さな固有値が均一に分布する固有スペクトルを持つことを示す。
論文 参考訳(メタデータ) (2021-10-27T04:40:27Z) - TRAPDOOR: Repurposing backdoors to detect dataset bias in machine
learning-based genomic analysis [15.483078145498085]
データセット内のグループの下位表現は、特定のグループの不正確な予測につながる可能性があるため、システム的識別問題を悪化させる可能性がある。
本稿では,ニューラルネットワークのバックドアであるTRAPDOORを提案する。
実世界のがんデータセットを用いて、すでに白人個人に対して存在するバイアスでデータセットを分析し、データセットにバイアスを人工的に導入する。
論文 参考訳(メタデータ) (2021-08-14T17:02:02Z) - Graph Embedding with Data Uncertainty [113.39838145450007]
スペクトルベースのサブスペース学習は、多くの機械学習パイプラインにおいて、一般的なデータ前処理ステップである。
ほとんどの部分空間学習法は、不確実性の高いデータにつながる可能性のある測定の不正確さやアーティファクトを考慮していない。
論文 参考訳(メタデータ) (2020-09-01T15:08:23Z) - Federated Doubly Stochastic Kernel Learning for Vertically Partitioned
Data [93.76907759950608]
本稿では,垂直分割データに対する2倍のカーネル学習アルゴリズムを提案する。
本稿では,FDSKLがカーネルを扱う場合,最先端のフェデレーション学習手法よりもはるかに高速であることを示す。
論文 参考訳(メタデータ) (2020-08-14T05:46:56Z) - Spectral Bias and Task-Model Alignment Explain Generalization in Kernel
Regression and Infinitely Wide Neural Networks [17.188280334580195]
トレーニングデータセットを越えた一般化は、マシンラーニングの主な目標である。
最近のディープニューラルネットワークの観測は、古典統計学の従来の知恵と矛盾している。
より多くのデータが、カーネルがノイズや表現できないときに一般化を損なう可能性があることを示す。
論文 参考訳(メタデータ) (2020-06-23T17:53:11Z) - Provably Efficient Causal Reinforcement Learning with Confounded
Observational Data [135.64775986546505]
オフラインで収集されたデータセット(観測データ)を組み込んで、オンライン環境でのサンプル効率を改善する方法について検討する。
提案手法は,観測データを効率よく組み込んだ,分解された楽観的値反復 (DOVI) アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-22T14:49:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。