論文の概要: Latent Style-based Quantum GAN for high-quality Image Generation
- arxiv url: http://arxiv.org/abs/2406.02668v1
- Date: Tue, 4 Jun 2024 18:00:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 23:08:11.264835
- Title: Latent Style-based Quantum GAN for high-quality Image Generation
- Title(参考訳): 高品質画像生成のための潜時型量子GAN
- Authors: Su Yeon Chang, Supanut Thanasilp, Bertrand Le Saux, Sofia Vallecorsa, Michele Grossi,
- Abstract要約: 本稿では,GAN(Generative Adversarial Networks)の学習に古典量子アプローチを併用したLastnt Style-based Quantum GAN(LaSt-QGAN)を紹介する。
私たちのLaSt-QGANは、標準的なMNISTを超えるリアルなコンピュータビジョンデータセット、すなわちファッション製品であるFashion MNISTと10キュービットのSAT4(地球観測画像)でうまくトレーニングできます。
- 参考スコア(独自算出の注目度): 28.3231031892146
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum generative modeling is among the promising candidates for achieving a practical advantage in data analysis. Nevertheless, one key challenge is to generate large-size images comparable to those generated by their classical counterparts. In this work, we take an initial step in this direction and introduce the Latent Style-based Quantum GAN (LaSt-QGAN), which employs a hybrid classical-quantum approach in training Generative Adversarial Networks (GANs) for arbitrary complex data generation. This novel approach relies on powerful classical auto-encoders to map a high-dimensional original image dataset into a latent representation. The hybrid classical-quantum GAN operates in this latent space to generate an arbitrary number of fake features, which are then passed back to the auto-encoder to reconstruct the original data. Our LaSt-QGAN can be successfully trained on realistic computer vision datasets beyond the standard MNIST, namely Fashion MNIST (fashion products) and SAT4 (Earth Observation images) with 10 qubits, resulting in a comparable performance (and even better in some metrics) with the classical GANs. Moreover, we analyze the barren plateau phenomena within this context of the continuous quantum generative model using a polynomial depth circuit and propose a method to mitigate the detrimental effect during the training of deep-depth networks. Through empirical experiments and theoretical analysis, we demonstrate the potential of LaSt-QGAN for the practical usage in the context of image generation and open the possibility of applying it to a larger dataset in the future.
- Abstract(参考訳): 量子生成モデリングは、データ分析において実用的な優位性を達成するための有望な候補の一つである。
それでも重要な課題の1つは、従来の画像に匹敵する大きな画像を生成することである。
本研究では、この方向の最初のステップを踏襲し、任意の複雑なデータ生成のためのGAN(Generative Adversarial Networks)の訓練に古典量子アプローチを併用したLastnt Style-based Quantum GAN(LaSt-QGAN)を導入する。
この新しいアプローチは、高次元の原画像データセットを潜在表現にマッピングするために、強力な古典的オートエンコーダに依存している。
ハイブリッド古典量子GANは、任意の数の偽の機能を生成するためにこの潜伏空間で動作し、それをオートエンコーダに渡して元のデータを再構築する。
我々のLaSt-QGANは、10キュービットのFashion MNIST(ファッション製品)とSAT4(地球観測画像)という、標準的なMNISTを超えるリアルなコンピュータビジョンデータセットでうまくトレーニングすることができ、その結果、古典的なGANと同等のパフォーマンス(といくつかの指標)が得られる。
さらに, 多項式深度回路を用いて連続量子生成モデルのこの文脈におけるバレンプラトー現象を解析し, 深層ネットワークのトレーニングにおける有害効果を軽減する方法を提案する。
実験的な実験と理論的解析を通じて、画像生成の文脈で実用化するためのLaSt-QGANの可能性を示し、将来、より大きなデータセットに適用する可能性を開く。
関連論文リスト
- Quantum Transfer Learning for MNIST Classification Using a Hybrid Quantum-Classical Approach [0.0]
本研究は、画像分類タスクにおける量子コンピューティングと古典的機械学習の統合について検討する。
両パラダイムの強みを生かしたハイブリッド量子古典的アプローチを提案する。
実験結果から、ハイブリッドモデルが量子コンピューティングと古典的手法を統合する可能性を示す一方で、量子結果に基づいて訓練された最終モデルの精度は、圧縮された特徴に基づいて訓練された古典的モデルよりも低いことが示唆された。
論文 参考訳(メタデータ) (2024-08-05T22:16:27Z) - Building Continuous Quantum-Classical Bayesian Neural Networks for a Classical Clinical Dataset [0.0]
本稿では,医学データセットの不確実性を考慮した分類を行う量子古典ベイズニューラルネットワーク(QCBNN)を提案する。
予測性能とモデルの不確実性の両方を捉える複数の行動メトリクスを追跡します。
より不確実な方法でサンプルを分類できるハイブリッドモデルを作ることは、私たちの野望です。
論文 参考訳(メタデータ) (2024-06-10T14:23:25Z) - Photonic quantum generative adversarial networks for classical data [0.0]
本稿では、線形光回路とFock空間符号化に基づく古典データ生成のための量子GANを提案する。
我々は、Quandelaのフォトニック量子プロセッサAscellaで量子GANをトレーニングする実験を行う。
論文 参考訳(メタデータ) (2024-05-09T18:00:10Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
本稿では,ニューラルネットワークプロトコルと古典的シャドウの強みを組み合わせたデータ中心学習パラダイムを提案する。
ニューラルネットワークの一般化力に基づいて、このパラダイムはオフラインでトレーニングされ、これまで目に見えないシステムを予測できる。
量子状態トモグラフィーおよび直接忠実度推定タスクにおいて、我々のパラダイムのインスタンス化を示し、60量子ビットまでの数値解析を行う。
論文 参考訳(メタデータ) (2023-08-22T09:11:53Z) - A Framework for Demonstrating Practical Quantum Advantage: Racing
Quantum against Classical Generative Models [62.997667081978825]
生成モデルの一般化性能を評価するためのフレームワークを構築した。
古典的および量子生成モデル間の実用的量子優位性(PQA)に対する最初の比較レースを確立する。
以上の結果から,QCBMは,他の最先端の古典的生成モデルよりも,データ制限方式の方が効率的であることが示唆された。
論文 参考訳(メタデータ) (2023-03-27T22:48:28Z) - Unsupervised Domain Transfer with Conditional Invertible Neural Networks [83.90291882730925]
条件付き可逆ニューラルネットワーク(cINN)に基づくドメイン転送手法を提案する。
提案手法は本質的に,その可逆的アーキテクチャによるサイクル一貫性を保証し,ネットワークトレーニングを最大限効率的に行うことができる。
提案手法は,2つの下流分類タスクにおいて,現実的なスペクトルデータの生成を可能にし,その性能を向上する。
論文 参考訳(メタデータ) (2023-03-17T18:00:27Z) - Hybrid Quantum-Classical Generative Adversarial Network for High
Resolution Image Generation [14.098992977726942]
量子機械学習(QML)は、古典的な機械学習手法を様々な問題で上回る可能性を秘め、注目を集めている。
QML手法のサブクラスは量子生成逆数ネットワーク(QGAN)であり、古典的なGANの量子対数として研究されている。
ここでは、古典的および量子的手法を統合し、新しいハイブリッド量子古典的GANフレームワークを提案する。
論文 参考訳(メタデータ) (2022-12-22T11:18:35Z) - Generalization Metrics for Practical Quantum Advantage in Generative
Models [68.8204255655161]
生成モデリングは量子コンピュータにとって広く受け入れられている自然のユースケースである。
我々は,アルゴリズムの一般化性能を計測して,生成モデリングのための実用的な量子優位性を探索する,単純で曖昧な手法を構築した。
シミュレーションの結果、我々の量子にインスパイアされたモデルは、目に見えない、有効なサンプルを生成するのに、最大で68倍の費用がかかります。
論文 参考訳(メタデータ) (2022-01-21T16:35:35Z) - Quantum Self-Supervised Learning [22.953284192004034]
対照的自己監督学習のためのハイブリッド量子古典ニューラルネットワークアーキテクチャを提案する。
ibmq_paris量子コンピュータ上の見えない画像を分類するために、最良の量子モデルを適用します。
論文 参考訳(メタデータ) (2021-03-26T18:00:00Z) - Generation of High-Resolution Handwritten Digits with an Ion-Trap
Quantum Computer [55.41644538483948]
本稿では, 量子回路に基づく生成モデルを構築し, 生成逆数ネットワークの事前分布を学習し, サンプル化する。
我々は、このハイブリッドアルゴリズムを171ドルのYb$+$ ion qubitsに基づいてイオントラップデバイスでトレーニングし、高品質な画像を生成する。
論文 参考訳(メタデータ) (2020-12-07T18:51:28Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
超伝導量子プロセッサを用いた実世界の手書き桁画像の学習と生成を実験的に行う。
我々の研究は、短期量子デバイス上での高度な量子生成モデル開発のためのガイダンスを提供する。
論文 参考訳(メタデータ) (2020-10-13T06:57:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。