論文の概要: Photonic quantum generative adversarial networks for classical data
- arxiv url: http://arxiv.org/abs/2405.06023v1
- Date: Thu, 9 May 2024 18:00:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-13 17:36:09.254240
- Title: Photonic quantum generative adversarial networks for classical data
- Title(参考訳): 古典データのためのフォトニック量子生成逆数ネットワーク
- Authors: Tigran Sedrakyan, Alexia Salavrakos,
- Abstract要約: 本稿では、線形光回路とFock空間符号化に基づく古典データ生成のための量子GANを提案する。
我々は、Quandelaのフォトニック量子プロセッサAscellaで量子GANをトレーニングする実験を行う。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: When Generative Adversarial Networks (GANs) first emerged, they marked a breakthrough in the field of classical machine learning. Researchers have since designed quantum versions of the algorithm, both for the generation of classical and quantum data, but most work so far has focused on qubit-based architectures. In this article, we focus on photonic quantum computing and present a quantum GAN based on linear optical circuits and Fock-space encoding for the generation of classical data. We explore the trainability and the performance of the model in a proof-of-concept image generation scenario. We then conduct an experiment where we train our quantum GAN on Quandela's photonic quantum processor Ascella.
- Abstract(参考訳): Generative Adversarial Networks (GAN) が最初に登場したとき、彼らは古典的な機械学習の分野で画期的な存在であった。
研究者らはその後、古典的データと量子的データの両方を生成するために、量子バージョンのアルゴリズムを設計してきた。
本稿では、フォトニック量子コンピューティングに焦点をあて、線形光回路とフォック空間符号化に基づく量子GANを古典データ生成のために提示する。
本稿では,概念実証画像生成シナリオにおけるモデルの訓練性と性能について考察する。
次に、Quandelaのフォトニック量子プロセッサAscellaで量子GANをトレーニングする実験を行います。
関連論文リスト
- Quantum Hamiltonian Embedding of Images for Data Reuploading Classifiers [0.9374652839580181]
最初の考慮事項の1つは、量子機械学習モデル自体の設計である。
最近の研究は、スピードアップによる量子アドバンテージが量子機械学習の正しい目標かどうかを疑問視し始めた。
本稿では,古典的なディープラーニングアルゴリズムの設計を量子ニューラルネットワークの設計に取り入れることで,代替手法を提案する。
論文 参考訳(メタデータ) (2024-07-19T06:31:22Z) - Hybrid Quantum-Classical Normalizing Flow [5.85475369017678]
パラメータ化量子回路に基づくハイブリッド量子古典正規化フロー(HQCNF)モデルを提案する。
我々は画像生成問題でモデルを検証した。
量子生成逆数ネットワーク(QGAN)のような他の量子生成モデルと比較して、我々のモデルはFr'echet 距離(FID)の低いスコアを得る。
論文 参考訳(メタデータ) (2024-05-22T16:37:22Z) - A Survey of Classical And Quantum Sequence Models [3.442372522693843]
本稿では,古典的自己アテンションモデルとその量子モデルの比較分析を行う。
我々はこれらの既存手法の重要代表集合を再実装し、量子自己アテンションを用いた画像分類アプローチを適用して量子ハイブリッドトランスを作成する。
また、異なる符号化手法を探求し、位置符号化を量子自己認識ニューラルネットワークに導入することにより、テキストと画像の分類実験における精度の向上とより高速な収束を実現する。
論文 参考訳(メタデータ) (2023-12-15T22:21:26Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
古典的なディープニューラルネットワークの量子アナログを構築することは、量子コンピューティングにおける根本的な課題である。
鍵となる問題は、古典的なディープラーニングの本質的な非線形性にどのように対処するかである。
我々は、深層機械学習のこれらの側面を複製できる量子機械学習の定式化であるQuantum Path Kernelを紹介する。
論文 参考訳(メタデータ) (2022-12-22T16:06:24Z) - Simulation of Entanglement Generation between Absorptive Quantum
Memories [56.24769206561207]
我々は、QUantum Network Communication (SeQUeNCe) のオープンソースシミュレータを用いて、2つの原子周波数コム(AFC)吸収量子メモリ間の絡み合いの発生をシミュレートする。
本研究は,SeQUeNCe における truncated Fock 空間内の光量子状態の表現を実現する。
本研究では,SPDC音源の平均光子数と,平均光子数とメモリモード数の両方で異なる絡み合い発生率を観測する。
論文 参考訳(メタデータ) (2022-12-17T05:51:17Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
線形および非線形の層をユニタリ量子ゲートとして表現する方法を示し、量子モデルの基本的な励起を粒子として解釈する。
ニューラルネットワークの研究のための新しい視点と技術を開くことに加えて、量子定式化は光量子コンピューティングに適している。
論文 参考訳(メタデータ) (2021-03-08T17:24:29Z) - Generation of High-Resolution Handwritten Digits with an Ion-Trap
Quantum Computer [55.41644538483948]
本稿では, 量子回路に基づく生成モデルを構築し, 生成逆数ネットワークの事前分布を学習し, サンプル化する。
我々は、このハイブリッドアルゴリズムを171ドルのYb$+$ ion qubitsに基づいてイオントラップデバイスでトレーニングし、高品質な画像を生成する。
論文 参考訳(メタデータ) (2020-12-07T18:51:28Z) - Quantum Deformed Neural Networks [83.71196337378022]
我々は,量子コンピュータ上で効率的に動作するように設計された新しい量子ニューラルネットワーク層を開発した。
入力状態の絡み合いに制限された場合、古典的なコンピュータでシミュレートすることができる。
論文 参考訳(メタデータ) (2020-10-21T09:46:12Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
超伝導量子プロセッサを用いた実世界の手書き桁画像の学習と生成を実験的に行う。
我々の研究は、短期量子デバイス上での高度な量子生成モデル開発のためのガイダンスを提供する。
論文 参考訳(メタデータ) (2020-10-13T06:57:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。