論文の概要: Photonic quantum generative adversarial networks for classical data
- arxiv url: http://arxiv.org/abs/2405.06023v1
- Date: Thu, 9 May 2024 18:00:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-13 17:36:09.254240
- Title: Photonic quantum generative adversarial networks for classical data
- Title(参考訳): 古典データのためのフォトニック量子生成逆数ネットワーク
- Authors: Tigran Sedrakyan, Alexia Salavrakos,
- Abstract要約: 本稿では、線形光回路とFock空間符号化に基づく古典データ生成のための量子GANを提案する。
我々は、Quandelaのフォトニック量子プロセッサAscellaで量子GANをトレーニングする実験を行う。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: When Generative Adversarial Networks (GANs) first emerged, they marked a breakthrough in the field of classical machine learning. Researchers have since designed quantum versions of the algorithm, both for the generation of classical and quantum data, but most work so far has focused on qubit-based architectures. In this article, we focus on photonic quantum computing and present a quantum GAN based on linear optical circuits and Fock-space encoding for the generation of classical data. We explore the trainability and the performance of the model in a proof-of-concept image generation scenario. We then conduct an experiment where we train our quantum GAN on Quandela's photonic quantum processor Ascella.
- Abstract(参考訳): Generative Adversarial Networks (GAN) が最初に登場したとき、彼らは古典的な機械学習の分野で画期的な存在であった。
研究者らはその後、古典的データと量子的データの両方を生成するために、量子バージョンのアルゴリズムを設計してきた。
本稿では、フォトニック量子コンピューティングに焦点をあて、線形光回路とフォック空間符号化に基づく量子GANを古典データ生成のために提示する。
本稿では,概念実証画像生成シナリオにおけるモデルの訓練性と性能について考察する。
次に、Quandelaのフォトニック量子プロセッサAscellaで量子GANをトレーニングする実験を行います。
関連論文リスト
- Quantum Latent Diffusion Models [65.16624577812436]
本稿では,古典的潜伏拡散モデルの確立した考え方を活用する量子拡散モデルの潜在的バージョンを提案する。
これには、従来のオートエンコーダを使用してイメージを削減し、次に潜時空間の変動回路で操作する。
この結果は、量子バージョンが生成した画像のより良い測定値を得ることによって証明されたように、量子バージョンを使用することの利点を示している。
論文 参考訳(メタデータ) (2025-01-19T21:24:02Z) - Quantum Diffusion Model for Quark and Gluon Jet Generation [3.129585931342323]
量子コンピューティング技術の恩恵を受ける新しい拡散モデルを導入する。
我々は大型ハドロン衝突型加速器から構造的に複雑なクォークとグルーオンジェットのデータセットの評価を行った。
論文 参考訳(メタデータ) (2024-12-30T17:00:54Z) - Hybrid Quantum-Classical Normalizing Flow [5.85475369017678]
パラメータ化量子回路に基づくハイブリッド量子古典正規化フロー(HQCNF)モデルを提案する。
我々は画像生成問題でモデルを検証した。
量子生成逆数ネットワーク(QGAN)のような他の量子生成モデルと比較して、我々のモデルはFr'echet 距離(FID)の低いスコアを得る。
論文 参考訳(メタデータ) (2024-05-22T16:37:22Z) - An error-mitigated photonic quantum circuit Born machine [0.0]
生成機械学習モデルは、新しいサンプルを生成するために、データの基盤となる分布を学習することを目的としている。
量子回路ボーンマシン(QCBM)は、浅い回路上で実装可能な量子生成モデルの一般的な選択である。
本稿では,光子損失を伴う現実的なシナリオにおけるQCBMのトレーニングを大幅に改善する,リサイクル緩和と呼ばれる新しいエラー軽減手法について述べる。
論文 参考訳(メタデータ) (2024-05-03T17:53:15Z) - A Full Quantum Generative Adversarial Network Model for High Energy Physics Simulations [0.0]
我々は,8ピクセルの小型キャラクタリメータシャワー画像を生成するために,GANモデルを開発した。
従来の量子モデルよりも有利な点は、このモデルがピクセルエネルギー値を含む実際の個々の画像を生成することである。
完全量子GANモデルの結果は、古典的判別器ニューラルネットワークを用いたハイブリッド量子古典モデルと比較される。
論文 参考訳(メタデータ) (2023-05-12T06:57:31Z) - Quantum machine learning for image classification [39.58317527488534]
本研究では、量子力学の原理を有効計算に活用する2つの量子機械学習モデルを紹介する。
我々の最初のモデルは、並列量子回路を持つハイブリッド量子ニューラルネットワークであり、ノイズの多い中間スケール量子時代においても計算の実行を可能にする。
第2のモデルは、クオン進化層を持つハイブリッド量子ニューラルネットワークを導入し、畳み込みプロセスによる画像の解像度を低下させる。
論文 参考訳(メタデータ) (2023-04-18T18:23:20Z) - A Framework for Demonstrating Practical Quantum Advantage: Racing
Quantum against Classical Generative Models [62.997667081978825]
生成モデルの一般化性能を評価するためのフレームワークを構築した。
古典的および量子生成モデル間の実用的量子優位性(PQA)に対する最初の比較レースを確立する。
以上の結果から,QCBMは,他の最先端の古典的生成モデルよりも,データ制限方式の方が効率的であることが示唆された。
論文 参考訳(メタデータ) (2023-03-27T22:48:28Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
線形および非線形の層をユニタリ量子ゲートとして表現する方法を示し、量子モデルの基本的な励起を粒子として解釈する。
ニューラルネットワークの研究のための新しい視点と技術を開くことに加えて、量子定式化は光量子コンピューティングに適している。
論文 参考訳(メタデータ) (2021-03-08T17:24:29Z) - Generation of High-Resolution Handwritten Digits with an Ion-Trap
Quantum Computer [55.41644538483948]
本稿では, 量子回路に基づく生成モデルを構築し, 生成逆数ネットワークの事前分布を学習し, サンプル化する。
我々は、このハイブリッドアルゴリズムを171ドルのYb$+$ ion qubitsに基づいてイオントラップデバイスでトレーニングし、高品質な画像を生成する。
論文 参考訳(メタデータ) (2020-12-07T18:51:28Z) - Quantum Deformed Neural Networks [83.71196337378022]
我々は,量子コンピュータ上で効率的に動作するように設計された新しい量子ニューラルネットワーク層を開発した。
入力状態の絡み合いに制限された場合、古典的なコンピュータでシミュレートすることができる。
論文 参考訳(メタデータ) (2020-10-21T09:46:12Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
超伝導量子プロセッサを用いた実世界の手書き桁画像の学習と生成を実験的に行う。
我々の研究は、短期量子デバイス上での高度な量子生成モデル開発のためのガイダンスを提供する。
論文 参考訳(メタデータ) (2020-10-13T06:57:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。