Latent Style-based Quantum GAN for high-quality Image Generation
- URL: http://arxiv.org/abs/2406.02668v1
- Date: Tue, 4 Jun 2024 18:00:00 GMT
- Title: Latent Style-based Quantum GAN for high-quality Image Generation
- Authors: Su Yeon Chang, Supanut Thanasilp, Bertrand Le Saux, Sofia Vallecorsa, Michele Grossi,
- Abstract summary: We introduce the Latent Style-based Quantum GAN (LaSt-QGAN), which employs a hybrid classical-quantum approach in training Generative Adversarial Networks (GANs)
Our LaSt-QGAN can be successfully trained on realistic computer vision datasets beyond the standard MNIST, namely Fashion MNIST (fashion products) and SAT4 (Earth Observation images) with 10 qubits.
- Score: 28.3231031892146
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum generative modeling is among the promising candidates for achieving a practical advantage in data analysis. Nevertheless, one key challenge is to generate large-size images comparable to those generated by their classical counterparts. In this work, we take an initial step in this direction and introduce the Latent Style-based Quantum GAN (LaSt-QGAN), which employs a hybrid classical-quantum approach in training Generative Adversarial Networks (GANs) for arbitrary complex data generation. This novel approach relies on powerful classical auto-encoders to map a high-dimensional original image dataset into a latent representation. The hybrid classical-quantum GAN operates in this latent space to generate an arbitrary number of fake features, which are then passed back to the auto-encoder to reconstruct the original data. Our LaSt-QGAN can be successfully trained on realistic computer vision datasets beyond the standard MNIST, namely Fashion MNIST (fashion products) and SAT4 (Earth Observation images) with 10 qubits, resulting in a comparable performance (and even better in some metrics) with the classical GANs. Moreover, we analyze the barren plateau phenomena within this context of the continuous quantum generative model using a polynomial depth circuit and propose a method to mitigate the detrimental effect during the training of deep-depth networks. Through empirical experiments and theoretical analysis, we demonstrate the potential of LaSt-QGAN for the practical usage in the context of image generation and open the possibility of applying it to a larger dataset in the future.
Related papers
- Quantum Transfer Learning for MNIST Classification Using a Hybrid Quantum-Classical Approach [0.0]
This research explores the integration of quantum computing with classical machine learning for image classification tasks.
We propose a hybrid quantum-classical approach that leverages the strengths of both paradigms.
The experimental results indicate that while the hybrid model demonstrates the feasibility of integrating quantum computing with classical techniques, the accuracy of the final model, trained on quantum outcomes, is currently lower than the classical model trained on compressed features.
arXiv Detail & Related papers (2024-08-05T22:16:27Z) - Building Continuous Quantum-Classical Bayesian Neural Networks for a Classical Clinical Dataset [0.0]
We introduce a Quantum-Classical Bayesian Neural Network (QCBNN) that is capable to perform uncertainty-aware classification of medical dataset.
We track multiple behavioral metrics that capture both predictive performance as well as model's uncertainty.
It is our ambition to create a hybrid model that is capable to classify samples in a more uncertainty aware fashion.
arXiv Detail & Related papers (2024-06-10T14:23:25Z) - Photonic quantum generative adversarial networks for classical data [0.0]
We present a quantum GAN based on linear optical circuits and Fock-space encoding for the generation of classical data.
We conduct an experiment where we train our quantum GAN on Quandela's photonic quantum processor Ascella.
arXiv Detail & Related papers (2024-05-09T18:00:10Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
We propose a data-centric learning paradigm combining the strength of neural-network protocols and classical shadows.
Capitalizing on the generalization power of neural networks, this paradigm can be trained offline and excel at predicting previously unseen systems.
We present the instantiation of our paradigm in quantum state tomography and direct fidelity estimation tasks and conduct numerical analysis up to 60 qubits.
arXiv Detail & Related papers (2023-08-22T09:11:53Z) - A Framework for Demonstrating Practical Quantum Advantage: Racing
Quantum against Classical Generative Models [62.997667081978825]
We build over a proposed framework for evaluating the generalization performance of generative models.
We establish the first comparative race towards practical quantum advantage (PQA) between classical and quantum generative models.
Our results suggest that QCBMs are more efficient in the data-limited regime than the other state-of-the-art classical generative models.
arXiv Detail & Related papers (2023-03-27T22:48:28Z) - Unsupervised Domain Transfer with Conditional Invertible Neural Networks [83.90291882730925]
We propose a domain transfer approach based on conditional invertible neural networks (cINNs)
Our method inherently guarantees cycle consistency through its invertible architecture, and network training can efficiently be conducted with maximum likelihood.
Our method enables the generation of realistic spectral data and outperforms the state of the art on two downstream classification tasks.
arXiv Detail & Related papers (2023-03-17T18:00:27Z) - Hybrid Quantum-Classical Generative Adversarial Network for High
Resolution Image Generation [14.098992977726942]
Quantum machine learning (QML) has received increasing attention due to its potential to outperform classical machine learning methods in various problems.
A subclass of QML methods is quantum generative adversarial networks (QGANs) which have been studied as a quantum counterpart of classical GANs.
Here we integrate classical and quantum techniques to propose a new hybrid quantum-classical GAN framework.
arXiv Detail & Related papers (2022-12-22T11:18:35Z) - Generalization Metrics for Practical Quantum Advantage in Generative
Models [68.8204255655161]
Generative modeling is a widely accepted natural use case for quantum computers.
We construct a simple and unambiguous approach to probe practical quantum advantage for generative modeling by measuring the algorithm's generalization performance.
Our simulation results show that our quantum-inspired models have up to a $68 times$ enhancement in generating unseen unique and valid samples.
arXiv Detail & Related papers (2022-01-21T16:35:35Z) - Quantum Self-Supervised Learning [22.953284192004034]
We propose a hybrid quantum-classical neural network architecture for contrastive self-supervised learning.
We apply our best quantum model to classify unseen images on the ibmq_paris quantum computer.
arXiv Detail & Related papers (2021-03-26T18:00:00Z) - Generation of High-Resolution Handwritten Digits with an Ion-Trap
Quantum Computer [55.41644538483948]
We implement a quantum-circuit based generative model to learn and sample the prior distribution of a Generative Adversarial Network.
We train this hybrid algorithm on an ion-trap device based on $171$Yb$+$ ion qubits to generate high-quality images.
arXiv Detail & Related papers (2020-12-07T18:51:28Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.