Hybrid Quantum-Classical Generative Adversarial Network for High
Resolution Image Generation
- URL: http://arxiv.org/abs/2212.11614v1
- Date: Thu, 22 Dec 2022 11:18:35 GMT
- Title: Hybrid Quantum-Classical Generative Adversarial Network for High
Resolution Image Generation
- Authors: Shu Lok Tsang and Maxwell T. West and Sarah M. Erfani and Muhammad
Usman
- Abstract summary: Quantum machine learning (QML) has received increasing attention due to its potential to outperform classical machine learning methods in various problems.
A subclass of QML methods is quantum generative adversarial networks (QGANs) which have been studied as a quantum counterpart of classical GANs.
Here we integrate classical and quantum techniques to propose a new hybrid quantum-classical GAN framework.
- Score: 14.098992977726942
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum machine learning (QML) has received increasing attention due to its
potential to outperform classical machine learning methods in various problems.
A subclass of QML methods is quantum generative adversarial networks (QGANs)
which have been studied as a quantum counterpart of classical GANs widely used
in image manipulation and generation tasks. The existing work on QGANs is still
limited to small-scale proof-of-concept examples based on images with
significant down-scaling. Here we integrate classical and quantum techniques to
propose a new hybrid quantum-classical GAN framework. We demonstrate its
superior learning capabilities by generating $28 \times 28$ pixels grey-scale
images without dimensionality reduction or classical pre/post-processing on
multiple classes of the standard MNIST and Fashion MNIST datasets, which
achieves comparable results to classical frameworks with 3 orders of magnitude
less trainable generator parameters. To gain further insight into the working
of our hybrid approach, we systematically explore the impact of its parameter
space by varying the number of qubits, the size of image patches, the number of
layers in the generator, the shape of the patches and the choice of prior
distribution. Our results show that increasing the quantum generator size
generally improves the learning capability of the network. The developed
framework provides a foundation for future design of QGANs with optimal
parameter set tailored for complex image generation tasks.
Related papers
- Quantum Transfer Learning for MNIST Classification Using a Hybrid Quantum-Classical Approach [0.0]
This research explores the integration of quantum computing with classical machine learning for image classification tasks.
We propose a hybrid quantum-classical approach that leverages the strengths of both paradigms.
The experimental results indicate that while the hybrid model demonstrates the feasibility of integrating quantum computing with classical techniques, the accuracy of the final model, trained on quantum outcomes, is currently lower than the classical model trained on compressed features.
arXiv Detail & Related papers (2024-08-05T22:16:27Z) - Quantum Generative Learning for High-Resolution Medical Image Generation [1.189046876525661]
Existing quantum generative adversarial networks (QGANs) fail to generate high-quality images due to their patch-based, pixel-wise learning approaches.
We propose a quantum image generative learning (QIGL) approach for high-quality medical image generation.
arXiv Detail & Related papers (2024-06-19T04:04:32Z) - Latent Style-based Quantum GAN for high-quality Image Generation [28.3231031892146]
We introduce the Latent Style-based Quantum GAN (LaSt-QGAN), which employs a hybrid classical-quantum approach in training Generative Adversarial Networks (GANs)
Our LaSt-QGAN can be successfully trained on realistic computer vision datasets beyond the standard MNIST, namely Fashion MNIST (fashion products) and SAT4 (Earth Observation images) with 10 qubits.
arXiv Detail & Related papers (2024-06-04T18:00:00Z) - Towards Efficient Quantum Hybrid Diffusion Models [68.43405413443175]
We propose a new methodology to design quantum hybrid diffusion models.
We propose two possible hybridization schemes combining quantum computing's superior generalization with classical networks' modularity.
arXiv Detail & Related papers (2024-02-25T16:57:51Z) - Variational Quantum Circuits Enhanced Generative Adversarial Network [5.209320054725053]
We propose a hybrid quantum-classical architecture for improving GAN (denoted as QC-GAN)
The QC-GAN consists of a quantum variational circuit together with a one-layer neural network, and the discriminator consists of a traditional neural network.
We have also demonstrated the superiority of QC-GAN over an alternative quantum GAN, namely pathGAN, which could hardly generate 16$times$16 or larger images.
arXiv Detail & Related papers (2024-02-02T03:59:35Z) - Towards Transfer Learning for Large-Scale Image Classification Using
Annealing-based Quantum Boltzmann Machines [7.106829260811707]
We present an approach to employ Quantum Annealing (QA) in image classification.
We propose using annealing-based Quantum Boltzmann Machines as part of a hybrid quantum-classical pipeline.
We find that our approach consistently outperforms its classical baseline in terms of test accuracy and AUC-ROC-Score.
arXiv Detail & Related papers (2023-11-27T16:07:49Z) - A Framework for Demonstrating Practical Quantum Advantage: Racing
Quantum against Classical Generative Models [62.997667081978825]
We build over a proposed framework for evaluating the generalization performance of generative models.
We establish the first comparative race towards practical quantum advantage (PQA) between classical and quantum generative models.
Our results suggest that QCBMs are more efficient in the data-limited regime than the other state-of-the-art classical generative models.
arXiv Detail & Related papers (2023-03-27T22:48:28Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
Building a quantum analog of classical deep neural networks represents a fundamental challenge in quantum computing.
Key issue is how to address the inherent non-linearity of classical deep learning.
We introduce the Quantum Path Kernel, a formulation of quantum machine learning capable of replicating those aspects of deep machine learning.
arXiv Detail & Related papers (2022-12-22T16:06:24Z) - Quantum Machine Learning with SQUID [64.53556573827525]
We present the Scaled QUantum IDentifier (SQUID), an open-source framework for exploring hybrid Quantum-Classical algorithms for classification problems.
We provide examples of using SQUID in a standard binary classification problem from the popular MNIST dataset.
arXiv Detail & Related papers (2021-04-30T21:34:11Z) - Generation of High-Resolution Handwritten Digits with an Ion-Trap
Quantum Computer [55.41644538483948]
We implement a quantum-circuit based generative model to learn and sample the prior distribution of a Generative Adversarial Network.
We train this hybrid algorithm on an ion-trap device based on $171$Yb$+$ ion qubits to generate high-quality images.
arXiv Detail & Related papers (2020-12-07T18:51:28Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.