Reinforcement learning-based architecture search for quantum machine learning
- URL: http://arxiv.org/abs/2406.02717v3
- Date: Mon, 5 Aug 2024 13:02:26 GMT
- Title: Reinforcement learning-based architecture search for quantum machine learning
- Authors: Frederic Rapp, David A. Kreplin, Marco F. Huber, Marco Roth,
- Abstract summary: Quantum machine learning models use encoding circuits to map data into a quantum Hilbert space.
We present a novel approach using reinforcement learning techniques to generate problem-specific encoding circuits.
Our results highlight the effectiveness of problem-specific encoding circuits in enhancing QML model performance.
- Score: 4.34233919529354
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum machine learning models use encoding circuits to map data into a quantum Hilbert space. While it is well known that the architecture of these circuits significantly influences core properties of the resulting model, they are often chosen heuristically. In this work, we present a novel approach using reinforcement learning techniques to generate problem-specific encoding circuits to improve the performance of quantum machine learning models. By specifically using a model-based reinforcement learning algorithm, we reduce the number of necessary circuit evaluations during the search, providing a sample-efficient framework. In contrast to previous search algorithms, our method uses a layered circuit structure that significantly reduces the search space. Additionally, our approach can account for multiple objectives such as solution quality, hardware restrictions and circuit depth. We benchmark our tailored circuits against various reference models, including models with problem-agnostic circuits and classical models. Our results highlight the effectiveness of problem-specific encoding circuits in enhancing QML model performance.
Related papers
- Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Qubit-Wise Architecture Search Method for Variational Quantum Circuits [11.790545710021593]
We propose a novel qubit-wise architec-ture search (QWAS) method, which progres-sively search one-qubit configuration per stage.
Our proposed method can balance the exploration and exploitation of cir-cuit performance and size in some real-world tasks, such as MNIST, Fashion and MOSI.
arXiv Detail & Related papers (2024-03-07T07:08:57Z) - Curriculum reinforcement learning for quantum architecture search under
hardware errors [1.583327010995414]
This work introduces a curriculum-based reinforcement learning QAS (CRLQAS) designed to tackle challenges in VQA deployment.
The algorithm incorporates (i) a 3D architecture encoding and restrictions on environment dynamics to explore the search space of possible circuits efficiently.
To facilitate studies, we developed an optimized simulator for our algorithm, significantly improving computational efficiency in noisy quantum circuits.
arXiv Detail & Related papers (2024-02-05T20:33:00Z) - Quantum Architecture Search with Unsupervised Representation Learning [24.698519892763283]
Unsupervised representation learning presents new opportunities for advancing Quantum Architecture Search (QAS)
QAS is designed to optimize quantum circuits for Variational Quantum Algorithms (VQAs)
arXiv Detail & Related papers (2024-01-21T19:53:17Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
We focus on variational quantum circuits (VQC), which emerged as the most promising candidates for the quantum counterpart of neural networks.
Although showing promising results, VQCs can be hard to train because of different issues, e.g., barren plateau, periodicity of the weights, or choice of architecture.
We propose a gradient-free algorithm inspired by natural evolution to optimize both the weights and the architecture of the VQC.
arXiv Detail & Related papers (2023-04-14T08:03:20Z) - Automated Quantum Circuit Design with Nested Monte Carlo Tree Search [3.2828784290497848]
Quantum algorithms based on variational approaches are one of the most promising methods to construct quantum solutions.
Despite the adaptability and simplicity, their scalability and the selection of suitable ans"atzs remain key challenges.
arXiv Detail & Related papers (2022-07-01T00:30:01Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
We propose a Reinforcement Learning (RL) approach combined with Graph Neural Networks (GNN) to address the contraction ordering problem.
The problem is extremely challenging due to the huge search space, the heavy-tailed reward distribution, and the challenging credit assignment.
We show how a carefully implemented RL-agent that uses a GNN as the basic policy construct can address these challenges.
arXiv Detail & Related papers (2022-04-18T21:45:13Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Quantum Architecture Search via Continual Reinforcement Learning [0.0]
This paper proposes a machine learning-based method to construct quantum circuit architectures.
We present the Probabilistic Policy Reuse with deep Q-learning (PPR-DQL) framework to tackle this circuit design challenge.
arXiv Detail & Related papers (2021-12-10T19:07:56Z) - Model-Based Deep Learning [155.063817656602]
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques.
Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance.
We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches.
arXiv Detail & Related papers (2020-12-15T16:29:49Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.