Isolation of individual Er quantum emitters in anatase TiO$_2$ on Si photonics
- URL: http://arxiv.org/abs/2406.02810v1
- Date: Tue, 4 Jun 2024 22:51:23 GMT
- Title: Isolation of individual Er quantum emitters in anatase TiO$_2$ on Si photonics
- Authors: Cheng Ji, Robert M. Pettit, Shobhit Gupta, Gregory D. Grant, Ignas Masiulionis, Ananthesh Sundaresh, Skylar Deckoff--Jones, Max Olberding, Manish K. Singh, F. Joseph Heremans, Supratik Guha, Alan M. Dibos, Sean E. Sullivan,
- Abstract summary: Single photon sources and quantum memories are the building blocks of quantum repeaters needed for long distance quantum networks.
In this work, we demonstrate the optical isolation of single Er$3+$ ions in titanium dioxide thin films monolithically integrated on a silicon-on-insulator (SOI) platform.
- Score: 1.0249646720847876
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Defects and dopant atoms in solid state materials are a promising platform for realizing single photon sources and quantum memories, which are the basic building blocks of quantum repeaters needed for long distance quantum networks. In particular, trivalent erbium (Er$^{3+}$) is of interest because it couples C-band telecom optical transitions with a spin-based memory platform. In order to produce quantum repeaters at the scale required for a quantum internet, it is imperative to integrate these necessary building blocks with mature and scalable semiconductor processes. In this work, we demonstrate the optical isolation of single Er$^{3+}$ ions in CMOS-compatible titanium dioxide (TiO$_2$) thin films monolithically integrated on a silicon-on-insulator (SOI) photonics platform. Our results demonstrate a first step toward the realization of a monolithically integrated and scalable quantum photonics package based on Er$^{3+}$ doped thin films.
Related papers
- Realisation of a Coherent and Efficient One-Dimensional Atom [0.15274583259797847]
A coherent and efficiently coupled one-dimensional atom provides a large nonlinearity, enabling photonic quantum gates.
Here, we use a semiconductor quantum dot in an open microcavity as an implementation of a one-dimensional atom.
Our results pave the way towards the creation of exotic photonic states and two-photon phase gates.
arXiv Detail & Related papers (2024-02-19T21:48:12Z) - Simulation of Entanglement Generation between Absorptive Quantum
Memories [56.24769206561207]
We use the open-source Simulator of QUantum Network Communication (SeQUeNCe), developed by our team, to simulate entanglement generation between two atomic frequency comb (AFC) absorptive quantum memories.
We realize the representation of photonic quantum states within truncated Fock spaces in SeQUeNCe.
We observe varying fidelity with SPDC source mean photon number, and varying entanglement generation rate with both mean photon number and memory mode number.
arXiv Detail & Related papers (2022-12-17T05:51:17Z) - A Quantum Repeater Platform based on Single SiV$^-$ Centers in Diamond
with Cavity-Assisted, All-Optical Spin Access and Fast Coherent Driving [45.82374977939355]
Quantum key distribution enables secure communication based on the principles of quantum mechanics.
Quantum repeaters are required to establish large-scale quantum networks.
We present an efficient spin-photon interface for quantum repeaters.
arXiv Detail & Related papers (2022-10-28T14:33:24Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Atomically-thin Single-photon Sources for Quantum Communication [0.28348950186890465]
Confined excitons in monolayers of transition metal dichalcogenides (TMDCs) constitute an emerging type of emitter for quantum light generation.
We pioneer the practical suitability of TMDC devices in quantum communication.
Our work opens the route towards wider applications of quantum information technologies using TMDC single-photon sources.
arXiv Detail & Related papers (2022-04-13T14:40:43Z) - Optical quantum memory based on electro-optically silenced photon echo [2.480084225009154]
Integrated quantum memories are a scalable solution to synchronize a large number of quantum computers.
We propose assigning the memory requirements on coherence property and control property to rare earth ions and lithium niobate crystal.
arXiv Detail & Related papers (2022-03-08T07:18:30Z) - Entanglement between a telecom photon and an on-demand multimode
solid-state quantum memory [52.77024349608834]
We show the first demonstration of entanglement between a telecom photon and a collective spin excitation in a multimode solid-state quantum memory.
We extend the entanglement storage in the quantum memory for up to 47.7$mu$s, which could allow for the distribution of entanglement between quantum nodes separated by distances of up to 10 km.
arXiv Detail & Related papers (2021-06-09T13:59:26Z) - Nonlinear down-conversion in a single quantum dot [0.0]
Photonic quantum technologies are on the verge of becoming commercially available.
One crucial building block are tailored nanoscale integratable quantum light sources.
We show an emitter-independent method to tailor and control the properties of the single photon emission.
arXiv Detail & Related papers (2021-05-26T08:31:16Z) - Room temperature single-photon emitters in silicon nitride [97.75917079876487]
We report on the first-time observation of room-temperature single-photon emitters in silicon nitride (SiN) films grown on silicon dioxide substrates.
As SiN has recently emerged as one of the most promising materials for integrated quantum photonics, the proposed platform is suitable for scalable fabrication of quantum on-chip devices.
arXiv Detail & Related papers (2021-04-16T14:20:11Z) - A Frequency-Multiplexed Coherent Electro-Optic Memory in Rare Earth
Doped Nanoparticles [94.37521840642141]
Quantum memories for light are essential components in quantum technologies like long-distance quantum communication and distributed quantum computing.
Recent studies have shown that long optical and spin coherence lifetimes can be observed in rare earth doped nanoparticles.
We report on coherent light storage in Eu$3+$:Y$$O$_3$ nanoparticles using the Stark Echo Modulation Memory (SEMM) quantum protocol.
arXiv Detail & Related papers (2020-06-17T13:25:54Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.