Unveiling Selection Biases: Exploring Order and Token Sensitivity in Large Language Models
- URL: http://arxiv.org/abs/2406.03009v1
- Date: Wed, 5 Jun 2024 07:16:51 GMT
- Title: Unveiling Selection Biases: Exploring Order and Token Sensitivity in Large Language Models
- Authors: Sheng-Lun Wei, Cheng-Kuang Wu, Hen-Hsen Huang, Hsin-Hsi Chen,
- Abstract summary: We investigate "selection biases" in Large Language Models (LLMs)
We quantify the impact of these biases through an extensive empirical analysis across multiple models and tasks.
We propose mitigation strategies to enhance model performance.
- Score: 24.300350113903768
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we investigate the phenomena of "selection biases" in Large Language Models (LLMs), focusing on problems where models are tasked with choosing the optimal option from an ordered sequence. We delve into biases related to option order and token usage, which significantly impact LLMs' decision-making processes. We also quantify the impact of these biases through an extensive empirical analysis across multiple models and tasks. Furthermore, we propose mitigation strategies to enhance model performance. Our key contributions are threefold: 1) Precisely quantifying the influence of option order and token on LLMs, 2) Developing strategies to mitigate the impact of token and order sensitivity to enhance robustness, and 3) Offering a detailed analysis of sensitivity across models and tasks, which informs the creation of more stable and reliable LLM applications for selection problems.
Related papers
- Embodied Agent Interface: Benchmarking LLMs for Embodied Decision Making [85.24399869971236]
We aim to evaluate Large Language Models (LLMs) for embodied decision making.
Existing evaluations tend to rely solely on a final success rate.
We propose a generalized interface (Embodied Agent Interface) that supports the formalization of various types of tasks.
arXiv Detail & Related papers (2024-10-09T17:59:00Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
Large language models (LLMs) remain under-studied in scenarios requiring optimal decision-making under uncertainty.
We measure LLMs' (in)ability to make optimal decisions in bandits, a state-less reinforcement learning setting relevant to many applications.
Motivated by the existence of optimal exploration algorithms, we propose efficient ways to integrate this algorithmic knowledge into LLMs.
arXiv Detail & Related papers (2024-10-08T17:54:03Z) - On the Modeling Capabilities of Large Language Models for Sequential Decision Making [52.128546842746246]
Large pretrained models are showing increasingly better performance in reasoning and planning tasks.
We evaluate their ability to produce decision-making policies, either directly, by generating actions, or indirectly.
In environments with unfamiliar dynamics, we explore how fine-tuning LLMs with synthetic data can significantly improve their reward modeling capabilities.
arXiv Detail & Related papers (2024-10-08T03:12:57Z) - An incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting [53.36437745983783]
We first construct a max-margin optimization-based model to model potentially non-monotonic preferences.
We devise information amount measurement methods and question selection strategies to pinpoint the most informative alternative in each iteration.
Two incremental preference elicitation-based algorithms are developed to learn potentially non-monotonic preferences.
arXiv Detail & Related papers (2024-09-04T14:36:20Z) - Leveraging LLMs for Dialogue Quality Measurement [27.046917937460798]
Large language models (LLMs) show robust zeroshot and few-shot capabilities across NLP tasks.
Manipulating factors such as model size, in-context examples, and selection techniques, we examine "chain-of-thought" (CoT) reasoning and label extraction procedures.
Our results indicate that LLMs that are suitably fine-tuned and have sufficient reasoning capabilities can be leveraged for automated dialogue evaluation.
arXiv Detail & Related papers (2024-06-25T06:19:47Z) - Enhancing Travel Choice Modeling with Large Language Models: A Prompt-Learning Approach [6.913791588789051]
We introduce a novel prompt-learning-based Large Language Model(LLM) framework that significantly improves prediction accuracy and provides explicit explanations for individual predictions.
We tested the framework's efficacy using two widely used choice datasets: London Passenger Mode Choice (LPMC) and Optima-Mode collected in Switzerland.
The results indicate that the LLM significantly outperforms state-of-the-art deep learning methods and discrete choice models in predicting people's choices.
arXiv Detail & Related papers (2024-06-19T13:46:08Z) - Grade Score: Quantifying LLM Performance in Option Selection [0.0]
"Grade Score" is a novel metric designed to evaluate the consistency and fairness of Large Language Models (LLMs)
The Grade Score combines Entropy, which measures order bias, and Mode Frequency, which assesses choice stability.
The study explores techniques such as prompt engineering and option sampling strategies to optimize the Grade Score.
arXiv Detail & Related papers (2024-06-17T19:29:39Z) - Deep Bayesian Active Learning for Preference Modeling in Large Language Models [84.817400962262]
We propose the Bayesian Active Learner for Preference Modeling (BAL-PM) for Preference Modeling.
BAL-PM requires 33% to 68% fewer preference labels in two popular human preference datasets and exceeds previous Bayesian acquisition policies.
Our experiments demonstrate that BAL-PM requires 33% to 68% fewer preference labels in two popular human preference datasets and exceeds previous Bayesian acquisition policies.
arXiv Detail & Related papers (2024-06-14T13:32:43Z) - Insights into Alignment: Evaluating DPO and its Variants Across Multiple Tasks [38.63497972682599]
This study investigates the performance of alignment methods across three scenarios: keeping theSupervised Fine-Tuning part, skipping the SFT part, and utilizing an instruction-tuned model.
Our evaluation spans a range of tasks including dialogue systems, reasoning, mathematical problem-solving, question answering, truthfulness, and multi-task understanding.
Key observations reveal that alignment methods achieve optimal performance with smaller training data subsets, exhibit limited effectiveness in reasoning tasks yet significantly impact mathematical problem-solving, and employing an instruction-tuned model notably influences truthfulness.
arXiv Detail & Related papers (2024-04-23T03:55:01Z) - Large Language Models Sensitivity to The Order of Options in
Multiple-Choice Questions [5.187383020960245]
Large Language Models (LLMs) have demonstrated remarkable capabilities in various NLP tasks.
Previous works have shown these models are sensitive towards prompt wording, and few-shot demonstrations and their order.
This paper investigates sensitivity of LLMs towards the order of options in multiple-choice questions.
arXiv Detail & Related papers (2023-08-22T14:54:59Z) - Learning MDPs from Features: Predict-Then-Optimize for Sequential
Decision Problems by Reinforcement Learning [52.74071439183113]
We study the predict-then-optimize framework in the context of sequential decision problems (formulated as MDPs) solved via reinforcement learning.
Two significant computational challenges arise in applying decision-focused learning to MDPs.
arXiv Detail & Related papers (2021-06-06T23:53:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.