論文の概要: From Tarzan to Tolkien: Controlling the Language Proficiency Level of LLMs for Content Generation
- arxiv url: http://arxiv.org/abs/2406.03030v1
- Date: Wed, 5 Jun 2024 07:57:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 19:29:27.258008
- Title: From Tarzan to Tolkien: Controlling the Language Proficiency Level of LLMs for Content Generation
- Title(参考訳): ターザンからトールキンへ:コンテンツ生成のためのLLMの言語習熟度制御
- Authors: Ali Malik, Stephen Mayhew, Chris Piech, Klinton Bicknell,
- Abstract要約: 本稿では,この課題に対するいくつかの重要なアプローチの有効性を評価する。
この結果から,プロンプトベース戦略を用いた場合,GPT-4とオープンソースモデルの間に大きな性能差があることが判明した。
我々の最良のモデルであるCALM (CEFR-Aligned Language Model) は、GPT-4やその他の戦略の性能をほんの少しのコストで上回ります。
- 参考スコア(独自算出の注目度): 10.009516150364371
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We study the problem of controlling the difficulty level of text generated by Large Language Models (LLMs) for contexts where end-users are not fully proficient, such as language learners. Using a novel framework, we evaluate the effectiveness of several key approaches for this task, including few-shot prompting, supervised finetuning, and reinforcement learning (RL), utilising both GPT-4 and open source alternatives like LLama2-7B and Mistral-7B. Our findings reveal a large performance gap between GPT-4 and the open source models when using prompt-based strategies. However, we show how to bridge this gap with a careful combination of finetuning and RL alignment. Our best model, CALM (CEFR-Aligned Language Model), surpasses the performance of GPT-4 and other strategies, at only a fraction of the cost. We further validate the quality of our results through a small-scale human study.
- Abstract(参考訳): 本研究では,言語学習者などエンドユーザーが十分に熟練していない状況において,Large Language Models (LLM) が生成するテキストの難易度を制御する問題について検討する。
GPT-4 と LLama2-7B や Mistral-7B といったオープンソースの代替品を併用した,少数ショットプロンプト,教師付き微調整,強化学習 (RL) など,この課題に対するいくつかの重要なアプローチの有効性を評価する。
この結果から,プロンプトベース戦略を用いた場合,GPT-4とオープンソースモデルの間に大きな性能差があることが判明した。
しかし、このギャップをファインタニングとRLアライメントの慎重に組み合わせて橋渡しする方法を示す。
我々の最良のモデルであるCALM (CEFR-Aligned Language Model) は、GPT-4やその他の戦略の性能をほんの少しのコストで上回ります。
我々は、小規模の人間による研究を通じて、結果の質をさらに検証する。
関連論文リスト
- Think Carefully and Check Again! Meta-Generation Unlocking LLMs for Low-Resource Cross-Lingual Summarization [108.6908427615402]
CLS(Cross-lingual summarization)は、異なるターゲット言語でソーステキストの要約を生成することを目的としている。
現在、インストラクションチューニング付き大規模言語モデル (LLM) は様々な英語タスクで優れている。
近年の研究では、LCSタスクにおけるLCMの性能は、わずかな設定でも満足できないことが示されている。
論文 参考訳(メタデータ) (2024-10-26T00:39:44Z) - StructuredRAG: JSON Response Formatting with Large Language Models [0.3141085922386211]
本研究では,大規模言語モデルの応答形式指示に従う際の習熟度を評価するための6つのタスクのベンチマークであるStructuredRAGを紹介する。
我々は4ビット量子化による2つの最先端LCM, Gemini 1.5 Pro と Llama 3 8B のインストラクトを評価した。
Llama 3 8B命令は、しばしばGemini 1.5 Proと競合する。
論文 参考訳(メタデータ) (2024-08-07T19:32:59Z) - Adaptable Logical Control for Large Language Models [68.27725600175013]
Ctrl-Gは、推論時にモデル生成のトラクタブルでフレキシブルな制御を容易にする適応可能なフレームワークである。
TULU2-7Bモデルに適用したCtrl-Gは、インタラクティブテキスト編集のタスクにおいて、GPT3.5とGPT4より優れていることを示す。
論文 参考訳(メタデータ) (2024-06-19T23:47:59Z) - TriSum: Learning Summarization Ability from Large Language Models with Structured Rationale [66.01943465390548]
本稿では,大規模言語モデルのテキスト要約能力を,コンパクトで局所的なモデルに抽出するフレームワークであるTriSumを紹介する。
本手法は,様々なベンチマーク上での局所モデル性能を向上させる。
また、要約の合理性に関する洞察を提供することで、解釈可能性も向上する。
論文 参考訳(メタデータ) (2024-03-15T14:36:38Z) - Adapting Large Language Models for Document-Level Machine Translation [46.370862171452444]
大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクを大幅に進歩させた。
近年の研究では、中程度のLLMはタスク固有の微調整後、より大きなLLMよりも優れていることが示されている。
本研究では,特定の言語対に対する文書レベルの機械翻訳(DocMT)にLLMを適用することに焦点を当てた。
論文 参考訳(メタデータ) (2024-01-12T09:29:13Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - Efficient Finetuning Large Language Models For Vietnamese Chatbot [1.2075778142867704]
大規模言語モデル(LLM)は、様々な自然言語タスクにおいて顕著な性能を発揮することが示されている。
Alpaca、GPT4All、Chat-Doctorなど、オープンソースの大規模インストラクションフォローデータセットを活用しています。
我々は,低ランク適応(LoRA)によるパラメータ効率チューニングを2つのオープンLLM上で行い,その結果,Bloomz-Chat,Bloomz-Doctor,GPTJ-Chat,GPTJ-Doctorの4つのモデルを得た。
論文 参考訳(メタデータ) (2023-09-09T00:11:53Z) - ChatGPT for Arabic Grammatical Error Correction [5.945320097465418]
大きな言語モデル(LLM)は、人間の指示に従うように微調整され、英語のNLPタスクにおいて重要な機能を示した。
本稿では,アラビア語の豊富な形態が原因で複雑化した課題である,アラビア語 GEC における微調整 LLM の指導能力について検討する。
命令の微調整モデルは,そのサイズによらず,かなり小型の完全微調整モデルに比べて性能が劣ることがわかった。
論文 参考訳(メタデータ) (2023-08-08T18:00:39Z) - TIM: Teaching Large Language Models to Translate with Comparison [78.66926087162672]
本稿では,LLMに翻訳学習を教えるために,サンプルを用いた新しいフレームワークを提案する。
我々のアプローチは、正しい翻訳例と間違った翻訳例をモデルに提示し、好みの損失を使ってモデルの学習をガイドすることである。
本研究は,翻訳タスクのための微調整LDMの新しい視点を提供し,高品質な翻訳を実現するための有望なソリューションを提供する。
論文 参考訳(メタデータ) (2023-07-10T08:15:40Z) - Democratizing LLMs for Low-Resource Languages by Leveraging their English Dominant Abilities with Linguistically-Diverse Prompts [75.33019401706188]
大規模言語モデル(LLM)は、少数の例を単純に観察することで、効果的にタスクを実行することが知られている。
我々は,LLMが任意の言語から英語に翻訳するよう促すために,多種多様な高ソース言語から合成例を組み立てることを提案する。
我々の教師なしプロンプト法は、英語と13のIndic言語と21のアフリカ低リソース言語間の翻訳において、異なる大きさのLLMにおける教師付き少ショット学習と同等に機能する。
論文 参考訳(メタデータ) (2023-06-20T08:27:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。