論文の概要: QueEn: A Large Language Model for Quechua-English Translation
- arxiv url: http://arxiv.org/abs/2412.05184v1
- Date: Fri, 06 Dec 2024 17:04:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-09 15:57:38.127528
- Title: QueEn: A Large Language Model for Quechua-English Translation
- Title(参考訳): QueEn: Quechua- English 翻訳のための大規模言語モデル
- Authors: Junhao Chen, Peng Shu, Yiwei Li, Huaqin Zhao, Hanqi Jiang, Yi Pan, Yifan Zhou, Zhengliang Liu, Lewis C Howe, Tianming Liu,
- Abstract要約: 本稿では,Retrieval-Augmented Generation(RAG)とパラメータ効率のよい微調整技術を組み合わせた,ケチュア英訳の新しい手法であるQueEnを提案する。
BLEUスコアは標準GPTモデルの1.5に対して17.6である。
- 参考スコア(独自算出の注目度): 20.377876059048692
- License:
- Abstract: Recent studies show that large language models (LLMs) are powerful tools for working with natural language, bringing advances in many areas of computational linguistics. However, these models face challenges when applied to low-resource languages due to limited training data and difficulty in understanding cultural nuances. In this paper, we propose QueEn, a novel approach for Quechua-English translation that combines Retrieval-Augmented Generation (RAG) with parameter-efficient fine-tuning techniques. Our method leverages external linguistic resources through RAG and uses Low-Rank Adaptation (LoRA) for efficient model adaptation. Experimental results show that our approach substantially exceeds baseline models, with a BLEU score of 17.6 compared to 1.5 for standard GPT models. The integration of RAG with fine-tuning allows our system to address the challenges of low-resource language translation while maintaining computational efficiency. This work contributes to the broader goal of preserving endangered languages through advanced language technologies.
- Abstract(参考訳): 近年の研究では、大規模言語モデル(LLM)が自然言語を扱うための強力なツールであることが示されており、計算言語学の多くの分野で進歩している。
しかし、これらのモデルは、限られたトレーニングデータと文化的なニュアンスを理解するのが困難であるため、低リソース言語に適用する際の課題に直面している。
本稿では,REG(Retrieval-Augmented Generation)とパラメータ効率のよい微調整技術を組み合わせた,Kechua-English翻訳の新しい手法であるQueEnを提案する。
提案手法はRAGを通して外部言語資源を活用し,ローランド適応(LoRA)を用いて効率的なモデル適応を行う。
実験の結果,標準GPTモデルでは1.5に対してBLEUスコアは17.6であった。
RAGと微調整の統合により,計算効率を保ちながら低リソース言語翻訳の課題に対処できる。
この研究は、先進的な言語技術を通じて絶滅危惧言語を保存するという、より広い目標に寄与する。
関連論文リスト
- Boosting the Capabilities of Compact Models in Low-Data Contexts with Large Language Models and Retrieval-Augmented Generation [2.9921619703037274]
本稿では,形態素解析の言語タスクにおいて,より小さなモデルの出力を補正するために,大言語モデル(LLM)を基盤とした検索拡張生成(RAG)フレームワークを提案する。
データ不足や訓練可能なパラメータの不足を補うために,言語情報を活用するとともに,LLMを通して解釈・蒸留された記述文法からの入力を許容する。
コンパクトなRAG支援モデルがデータスカース設定に極めて有効であることを示し、このタスクとターゲット言語に対する新しい最先端技術を実現する。
論文 参考訳(メタデータ) (2024-10-01T04:20:14Z) - InkubaLM: A small language model for low-resource African languages [9.426968756845389]
InkubaLMは0.4億のパラメータを持つ小さな言語モデルである。
パラメータ数が大幅に大きいモデルに匹敵するパフォーマンスを実現する。
複数の言語にまたがる顕著な一貫性を示す。
論文 参考訳(メタデータ) (2024-08-30T05:42:31Z) - Assessing Code Generation with Intermediate Languages [6.999311675957218]
本研究では、様々なプログラミング言語、自然言語ソリューション、擬似コードを含む中間言語の利用について検討する。
以上の結果から, 中間言語は一般に, 最先端性能を達成できていない大規模モデルにおいて, 高い有効性を示すことが明らかとなった。
論文 参考訳(メタデータ) (2024-07-07T15:35:41Z) - MoE-CT: A Novel Approach For Large Language Models Training With Resistance To Catastrophic Forgetting [53.77590764277568]
ベースモデルの学習を多言語拡張プロセスから分離する新しいMoE-CTアーキテクチャを提案する。
我々の設計では、元のLLMパラメータを凍結し、高リソース言語のパフォーマンスを保護しますが、様々な言語データセットに基づいてトレーニングされたMoEモジュールは、低リソース言語の習熟度を向上します。
論文 参考訳(メタデータ) (2024-06-25T11:03:45Z) - Open Generative Large Language Models for Galician [1.3049334790726996]
大規模言語モデル(LLM)は自然言語処理に変化をもたらした。
しかし、彼らの主に英語中心のトレーニングは、言語間でのバイアスとパフォーマンスの相違につながっている。
この不均衡は、ガリシア語のような低い資源を持つ言語にとって、NLP技術への公平なアクセスを困難にしている。
このギャップを埋めるために、ガリシアに焦点をあてた最初の2つの生成LDMを提示する。
論文 参考訳(メタデータ) (2024-06-19T23:49:56Z) - Breaking Boundaries: Investigating the Effects of Model Editing on Cross-linguistic Performance [6.907734681124986]
本稿では,多言語文脈における知識編集技術を検討することにより,言語的平等の必要性を戦略的に識別する。
Mistral, TowerInstruct, OpenHathi, Tamil-Llama, Kan-Llamaなどのモデルの性能を,英語,ドイツ語,フランス語,イタリア語,スペイン語,ヒンディー語,タミル語,カンナダ語を含む言語で評価した。
論文 参考訳(メタデータ) (2024-06-17T01:54:27Z) - The Power of Question Translation Training in Multilingual Reasoning: Broadened Scope and Deepened Insights [108.40766216456413]
大規模言語モデルの英語と非英語のパフォーマンスのギャップを埋めるための質問アライメントフレームワークを提案する。
実験結果から、さまざまな推論シナリオ、モデルファミリー、サイズにわたって、多言語のパフォーマンスを向上できることが示された。
我々は、表現空間、生成された応答とデータスケールを分析し、質問翻訳訓練がLLM内の言語アライメントをどのように強化するかを明らかにする。
論文 参考訳(メタデータ) (2024-05-02T14:49:50Z) - Extrapolating Multilingual Understanding Models as Multilingual
Generators [82.1355802012414]
本稿では,多言語理解モデルに統一モデルを得るための生成能力を付与する手法について検討する。
少数の新しいパラメータを持つ多言語ジェネレータにエンコーダを適用するために,textbfSemantic-textbfGuided textbfAlignment-then-Denoising (SGA)アプローチを提案する。
論文 参考訳(メタデータ) (2023-05-22T15:33:21Z) - A Survey of Large Language Models [81.06947636926638]
言語モデリングは、過去20年間、言語理解と生成のために広く研究されてきた。
近年,大規模コーパス上でのトランスフォーマーモデルの事前学習により,事前学習言語モデル (PLM) が提案されている。
パラメータスケールの違いを識別するために、研究コミュニティは大規模言語モデル (LLM) という用語を提唱した。
論文 参考訳(メタデータ) (2023-03-31T17:28:46Z) - Bridging the Gap Between Training and Inference of Bayesian Controllable
Language Models [58.990214815032495]
大規模事前学習型言語モデルは、自然言語生成タスクにおいて大きな成功を収めている。
BCLMは制御可能な言語生成において効率的であることが示されている。
本稿では,ミスマッチ問題を少ない計算コストで軽減する制御可能な言語生成のための"Gemini Discriminator"を提案する。
論文 参考訳(メタデータ) (2022-06-11T12:52:32Z) - Mixed-Lingual Pre-training for Cross-lingual Summarization [54.4823498438831]
言語間の要約は、ソース言語の記事に対する対象言語の要約を作成することを目的としている。
本稿では,翻訳のような言語間タスクと,マスク付き言語モデルのようなモノリンガルタスクの両方を活用する混合言語事前学習に基づくソリューションを提案する。
本モデルでは,2.82(中国語)と1.15(中国語,英語)のROUGE-1スコアを最先端の結果に対して改善する。
論文 参考訳(メタデータ) (2020-10-18T00:21:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。