A Quantum Neural Network-Based Approach to Power Quality Disturbances Detection and Recognition
- URL: http://arxiv.org/abs/2406.03081v1
- Date: Wed, 5 Jun 2024 09:10:11 GMT
- Title: A Quantum Neural Network-Based Approach to Power Quality Disturbances Detection and Recognition
- Authors: Guo-Dong Li, Hai-Yan He, Yue Li, Xin-Hao Li, Hao Liu, Qing-Le Wang, Long Cheng,
- Abstract summary: Power quality disturbances (PQDs) significantly impact the stability and reliability of power systems.
This paper proposes an improved quantum neural networks (QNN) model for PQDs detection and recognition.
The model achieves accuracies of 99.75%, 97.85% and 95.5% in experiments involving the detection of disturbances, recognition of seven single disturbances, and recognition of ten mixed disturbances.
- Score: 15.789631792979366
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Power quality disturbances (PQDs) significantly impact the stability and reliability of power systems, necessitating accurate and efficient detection and recognition methods. While numerous classical algorithms for PQDs detection and recognition have been extensively studied and applied, related work in the quantum domain is still in its infancy. In this paper, an improved quantum neural networks (QNN) model for PQDs detection and recognition is proposed. Specifically, the model constructs a quantum circuit comprising data qubits and ancilla qubits. Classical data is transformed into quantum data by embedding it into data qubits via the encoding layer. Subsequently, parametric quantum gates are utilized to form the variational layer, which facilitates qubit information transformation, thereby extracting essential feature information for detection and recognition. The expected value is obtained by measuring ancilla qubits, enabling the completion of disturbance classification based on this expected value. An analysis reveals that the runtime and space complexities of the QNN are $O\left ( poly\left ( N \right ) \right )$ and $O\left ( N \right )$, respectively. Extensive experiments validate the feasibility and superiority of the proposed model in PQD detection and recognition. The model achieves accuracies of 99.75\%, 97.85\% and 95.5\% in experiments involving the detection of disturbances, recognition of seven single disturbances, and recognition of ten mixed disturbances, respectively. Additionally, noise simulation and comparative experiments demonstrate that the proposed model exhibits robust anti-noise capabilities, requires few training parameters, and maintains high accuracy.
Related papers
- Quantum-Trained Convolutional Neural Network for Deepfake Audio Detection [3.2927352068925444]
deepfake technologies pose challenges to privacy, security, and information integrity.
This paper introduces a Quantum-Trained Convolutional Neural Network framework designed to enhance the detection of deepfake audio.
arXiv Detail & Related papers (2024-10-11T20:52:10Z) - Quantum-enhanced learning with a controllable bosonic variational sensor network [0.40964539027092906]
Supervised learning assisted by an entangled sensor network (SLAEN)
We propose a SLAEN capable of handling nonlinear data classification tasks.
We uncover a threshold phenomenon in classification error -- when the energy of probes exceeds a certain threshold, the error drastically to zero.
arXiv Detail & Related papers (2024-04-28T19:41:40Z) - Identifiability and Characterization of Transmon Qutrits Through Bayesian Experimental Design [0.0]
We present an online, Bayesian approach for quantum characterization of qutrit systems.
Unlike most characterization protocols that provide point-estimates of the parameters, the proposed approach is able to estimate their probability distribution.
We provide a mathematical proof of the theoretical identifiability of the model parameters and present conditions on the quantum state under which the parameters are identifiable.
arXiv Detail & Related papers (2023-12-15T22:02:54Z) - Optical Quantum Sensing for Agnostic Environments via Deep Learning [59.088205627308]
We introduce an innovative Deep Learning-based Quantum Sensing scheme.
It enables optical quantum sensors to attain Heisenberg limit (HL) in agnostic environments.
Our findings offer a new lens through which to accelerate optical quantum sensing tasks.
arXiv Detail & Related papers (2023-11-13T09:46:05Z) - Flexible Error Mitigation of Quantum Processes with Data Augmentation
Empowered Neural Model [9.857921247636451]
We propose a data augmentation empowered neural model for error mitigation (DAEM)
Our model does not require any prior knowledge about the specific noise type and measurement settings.
It can estimate noise-free statistics solely from the noisy measurement results of the target quantum process.
arXiv Detail & Related papers (2023-11-03T05:52:14Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
We develop an approach to characterize the dynamics of a quantum device and learn device parameters.
This approach outperforms physics-agnostic recurrent neural networks trained on numerically generated and experimental data.
This demonstration shows how leveraging domain knowledge improves the accuracy and efficiency of this characterization task.
arXiv Detail & Related papers (2021-06-24T15:58:57Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
We propose SignalNet, a neural network architecture that detects the number of sinusoids and estimates their parameters from quantized in-phase and quadrature samples.
We introduce a worst-case learning threshold for comparing the results of our network relative to the underlying data distributions.
In simulation, we find that our algorithm is always able to surpass the threshold for three-bit data but often cannot exceed the threshold for one-bit data.
arXiv Detail & Related papers (2021-06-10T04:21:20Z) - Particle Track Classification Using Quantum Associative Memory [0.3058685580689604]
Pattern recognition algorithms are commonly employed to simplify the step of track reconstruction in sub-atomic physics experiments.
We study quantum associative memory based on quantum annealing and apply it to the particle track classification.
We characterize classification performance of these approaches as a function detector resolution, pattern library size, and detector inefficiencies, using the D-Wave 2000Q processor as a testbed.
arXiv Detail & Related papers (2020-11-24T02:32:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.