Graph Convolutional Branch and Bound
- URL: http://arxiv.org/abs/2406.03099v3
- Date: Thu, 10 Jul 2025 19:29:49 GMT
- Title: Graph Convolutional Branch and Bound
- Authors: Lorenzo Sciandra, Roberto Esposito, Andrea Cesare Grosso, Laura Sacerdote, Cristina Zucca,
- Abstract summary: We propose using neural networks to learn informatives-most notably, an optimality score that estimates a solution's proximity to the optimum.<n>This score is used to evaluate nodes within a branch-and-bound framework, enabling a more efficient of the solution space.
- Score: 1.8966938152549224
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This article explores the integration of deep learning models into combinatorial optimization pipelines, specifically targeting NP-hard problems. Traditional exact algorithms for such problems often rely on heuristic criteria to guide the exploration of feasible solutions. In this work, we propose using neural networks to learn informative heuristics-most notably, an optimality score that estimates a solution's proximity to the optimum. This score is used to evaluate nodes within a branch-and-bound framework, enabling a more efficient traversal of the solution space. Focusing on the Traveling Salesman Problem, we describe two exact solvers-1-tree branch-and-bound and Concorde-and introduce a hybrid approach called Graph Convolutional Branch and Bound, which augments these solvers with a graph convolutional neural network along with a novel unsupervised training strategy that facilitates generalization to graphs of varying sizes without requiring labeled data. Empirical results demonstrate the effectiveness of the proposed method, showing a significant reduction in the number of explored branch-and-bound nodes and overall computational time.
Related papers
- Algorithm-Informed Graph Neural Networks for Leakage Detection and Localization in Water Distribution Networks [6.675805308519987]
Leakages are a significant challenge for the efficient and sustainable management of water distribution networks.
Recent approaches have used graph-based data-driven methods.
We propose an algorithm-informed graph neural network (AIGNN) to detect and localize leaks.
arXiv Detail & Related papers (2024-08-05T19:25:05Z) - Decision-focused Graph Neural Networks for Combinatorial Optimization [62.34623670845006]
An emerging strategy to tackle optimization problems involves the adoption of graph neural networks (GNNs) as an alternative to traditional algorithms.
Despite the growing popularity of GNNs and traditional algorithm solvers in the realm of CO, there is limited research on their integrated use and the correlation between them within an end-to-end framework.
We introduce a decision-focused framework that utilizes GNNs to address CO problems with auxiliary support.
arXiv Detail & Related papers (2024-06-05T22:52:27Z) - GASE: Graph Attention Sampling with Edges Fusion for Solving Vehicle Routing Problems [6.084414764415137]
We propose an adaptive Graph Attention Sampling with the Edges Fusion framework to solve vehicle routing problems.
Our proposed model outperforms the existing methods by 2.08%-6.23% and shows stronger generalization ability.
arXiv Detail & Related papers (2024-05-21T03:33:07Z) - Unfolded proximal neural networks for robust image Gaussian denoising [7.018591019975253]
We propose a unified framework to build PNNs for the Gaussian denoising task, based on both the dual-FB and the primal-dual Chambolle-Pock algorithms.
We also show that accelerated versions of these algorithms enable skip connections in the associated NN layers.
arXiv Detail & Related papers (2023-08-06T15:32:16Z) - Learning to Identify Graphs from Node Trajectories in Multi-Robot
Networks [15.36505600407192]
We propose a learning-based approach that efficiently uncovers graph topologies with global convergence guarantees.
We demonstrate the effectiveness of our approach in identifying graphs in multi-robot formation and flocking tasks.
arXiv Detail & Related papers (2023-07-10T07:09:12Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - The Cascaded Forward Algorithm for Neural Network Training [61.06444586991505]
We propose a new learning framework for neural networks, namely Cascaded Forward (CaFo) algorithm, which does not rely on BP optimization as that in FF.
Unlike FF, our framework directly outputs label distributions at each cascaded block, which does not require generation of additional negative samples.
In our framework each block can be trained independently, so it can be easily deployed into parallel acceleration systems.
arXiv Detail & Related papers (2023-03-17T02:01:11Z) - Learning Branching Heuristics from Graph Neural Networks [1.4660170768702356]
We first propose a new graph neural network (GNN) model designed using a probabilistic method.
Our approach introduces a new way of applying GNNs towards enhancing the classical backtracking algorithm used in AI.
arXiv Detail & Related papers (2022-11-26T00:01:01Z) - Towards Better Out-of-Distribution Generalization of Neural Algorithmic
Reasoning Tasks [51.8723187709964]
We study the OOD generalization of neural algorithmic reasoning tasks.
The goal is to learn an algorithm from input-output pairs using deep neural networks.
arXiv Detail & Related papers (2022-11-01T18:33:20Z) - Inability of a graph neural network heuristic to outperform greedy
algorithms in solving combinatorial optimization problems like Max-Cut [0.0]
In Nature Machine Intelligence 4, 367 (2022), Schuetz et al provide a scheme to employ neural graph networks (GNN) to solve a variety of classical, NP-hard optimization problems.
It describes how the network is trained on sample instances and the resulting GNN is evaluated applying widely used techniques to determine its ability to succeed.
However, closer inspection shows that the reported results for this GNN are only minutely better than those for gradient descent and get outperformed by a greedy algorithm.
arXiv Detail & Related papers (2022-10-02T20:50:33Z) - Neural Improvement Heuristics for Graph Combinatorial Optimization
Problems [49.85111302670361]
We introduce a novel Neural Improvement (NI) model capable of handling graph-based problems where information is encoded in the nodes, edges, or both.
The presented model serves as a fundamental component for hill-climbing-based algorithms that guide the selection of neighborhood operations for each.
arXiv Detail & Related papers (2022-06-01T10:35:29Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - A Differentiable Approach to Combinatorial Optimization using Dataless
Neural Networks [20.170140039052455]
We propose a radically different approach in that no data is required for training the neural networks that produce the solution.
In particular, we reduce the optimization problem to a neural network and employ a dataless training scheme to refine the parameters of the network such that those parameters yield the structure of interest.
arXiv Detail & Related papers (2022-03-15T19:21:31Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z) - A Generative Graph Method to Solve the Travelling Salesman Problem [1.552282932199974]
We propose to use the novel Graph Learning Network (GLN), a generative approach, to approximately solve the Travelling Salesman Problem (TSP)
GLN model learns directly the pattern of TSP instances as training dataset, encodes the graph properties, and merge the different node embeddings to output node-to-node an optimal tour.
arXiv Detail & Related papers (2020-07-09T17:23:55Z) - Differentiable Causal Discovery from Interventional Data [141.41931444927184]
We propose a theoretically-grounded method based on neural networks that can leverage interventional data.
We show that our approach compares favorably to the state of the art in a variety of settings.
arXiv Detail & Related papers (2020-07-03T15:19:17Z) - Online Dense Subgraph Discovery via Blurred-Graph Feedback [87.9850024070244]
We introduce a novel learning problem for dense subgraph discovery.
We first propose a edge-time algorithm that obtains a nearly-optimal solution with high probability.
We then design a more scalable algorithm with a theoretical guarantee.
arXiv Detail & Related papers (2020-06-24T11:37:33Z) - Neural Bipartite Matching [19.600193617583955]
This report describes how neural execution is applied to a complex algorithm.
It is achieved via neural execution based only on features generated from a single GNN.
The evaluation shows strongly generalising results with the network achieving optimal matching almost 100% of the time.
arXiv Detail & Related papers (2020-05-22T17:50:38Z) - Channel Assignment in Uplink Wireless Communication using Machine
Learning Approach [54.012791474906514]
This letter investigates a channel assignment problem in uplink wireless communication systems.
Our goal is to maximize the sum rate of all users subject to integer channel assignment constraints.
Due to high computational complexity, machine learning approaches are employed to obtain computational efficient solutions.
arXiv Detail & Related papers (2020-01-12T15:54:20Z) - Fractional order graph neural network [28.229115966246937]
This paper proposes fractional order graph neural networks (FGNNs) to address the challenges of local optimum of classic and fractional graph neural networks.
The approximate calculation of fractional order gradients also overcomes the high computational complexity of fractional order derivations.
arXiv Detail & Related papers (2020-01-05T11:55:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.