論文の概要: VQUNet: Vector Quantization U-Net for Defending Adversarial Atacks by Regularizing Unwanted Noise
- arxiv url: http://arxiv.org/abs/2406.03117v1
- Date: Wed, 5 Jun 2024 10:10:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 18:59:55.880970
- Title: VQUNet: Vector Quantization U-Net for Defending Adversarial Atacks by Regularizing Unwanted Noise
- Title(参考訳): VQUNet: 不要雑音の正規化による逆アタック防止のためのベクトル量子化U-Net
- Authors: Zhixun He, Mukesh Singhal,
- Abstract要約: 本稿では,新たなノイズ低減手法であるベクトル量子化U-Net(VQUNet)を導入し,対向雑音を低減し,高忠実度でデータを再構成する。
VQUNetは、ノイズ低減とデータ再構成の両方のためのマルチスケール階層構造を通して、離散潜在表現学習を特徴とする。
これは、Fashion-MNISTとCIFAR10データセットの両方に対する様々な敵攻撃の下で、最先端のノイズ低減ベースの防衛手法より優れている。
- 参考スコア(独自算出の注目度): 0.5755004576310334
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Deep Neural Networks (DNN) have become a promising paradigm when developing Artificial Intelligence (AI) and Machine Learning (ML) applications. However, DNN applications are vulnerable to fake data that are crafted with adversarial attack algorithms. Under adversarial attacks, the prediction accuracy of DNN applications suffers, making them unreliable. In order to defend against adversarial attacks, we introduce a novel noise-reduction procedure, Vector Quantization U-Net (VQUNet), to reduce adversarial noise and reconstruct data with high fidelity. VQUNet features a discrete latent representation learning through a multi-scale hierarchical structure for both noise reduction and data reconstruction. The empirical experiments show that the proposed VQUNet provides better robustness to the target DNN models, and it outperforms other state-of-the-art noise-reduction-based defense methods under various adversarial attacks for both Fashion-MNIST and CIFAR10 datasets. When there is no adversarial attack, the defense method has less than 1% accuracy degradation for both datasets.
- Abstract(参考訳): Deep Neural Networks(DNN)は、人工知能(AI)と機械学習(ML)アプリケーションを開発する際に、有望なパラダイムとなっている。
しかし、DNNアプリケーションは敵攻撃アルゴリズムで構築された偽データに対して脆弱である。
敵の攻撃下では、DNNアプリケーションの予測精度が損なわれ、信頼できない。
敵の攻撃に対して防御するために,敵の雑音を低減し,高い忠実度でデータを再構成する新しいノイズ低減手法であるベクトル量子化U-Net(VQUNet)を導入する。
VQUNetは、ノイズ低減とデータ再構成の両方のためのマルチスケール階層構造を通して、離散潜在表現学習を特徴とする。
実験により、提案したVQUNetはターゲットのDNNモデルに対してより堅牢性を提供し、Fashion-MNISTおよびCIFAR10データセットに対する様々な敵攻撃の下で、他の最先端のノイズ低減ベースの防御手法よりも優れていることが示された。
敵攻撃がない場合、防御法は両方のデータセットに対して1%未満の精度で劣化する。
関連論文リスト
- A Geometrical Approach to Evaluate the Adversarial Robustness of Deep
Neural Networks [52.09243852066406]
対向収束時間スコア(ACTS)は、対向ロバストネス指標として収束時間を測定する。
我々は,大規模画像Netデータセットに対する異なる敵攻撃に対して,提案したACTSメトリックの有効性と一般化を検証する。
論文 参考訳(メタデータ) (2023-10-10T09:39:38Z) - Improving Robustness Against Adversarial Attacks with Deeply Quantized
Neural Networks [0.5849513679510833]
ディープニューラルネットワーク(DNN)の欠点は、入力にわずかな摂動を加えることで騙されるため、敵の攻撃に対する脆弱性である。
本稿では,対戦型ブラックボックス攻撃に対して堅牢な小型DNNモデルを考案し,自動量子化学習フレームワークを用いて訓練した結果を報告する。
論文 参考訳(メタデータ) (2023-04-25T13:56:35Z) - Chaotic Variational Auto encoder-based Adversarial Machine Learning [3.773653335175799]
変分オート(VAE)による対向サンプル生成に基づく新たな攻撃機構を提案する。
我々は,ロジスティック回帰 (LR) モデルと決定木 (DT) モデルに対して,Evasion と Data-Poison の攻撃を行った。
その結果、VAE-Deep-WNNは残りのデータセットやモデルよりも優れていた。
論文 参考訳(メタデータ) (2023-02-25T02:06:15Z) - Unfolding Local Growth Rate Estimates for (Almost) Perfect Adversarial
Detection [22.99930028876662]
畳み込みニューラルネットワーク(CNN)は、多くの知覚的タスクにおける最先端のソリューションを定義する。
現在のCNNアプローチは、システムを騙すために特別に作られた入力の敵の摂動に対して脆弱なままである。
本稿では,ネットワークの局所固有次元(LID)と敵攻撃の関係について,最近の知見を生かした,シンプルで軽量な検出器を提案する。
論文 参考訳(メタデータ) (2022-12-13T17:51:32Z) - Learning from Attacks: Attacking Variational Autoencoder for Improving
Image Classification [17.881134865491063]
敵対的攻撃はディープニューラルネットワーク(DNN)の堅牢性に対する脅威と見なされることが多い。
この研究は、異なる視点から敵の攻撃を分析する。つまり、敵の例は、予測に有用な暗黙の情報を含んでいる。
データ自己表現とタスク固有の予測にDNNの利点を利用するアルゴリズムフレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-11T08:48:26Z) - Generating Adversarial Examples with Graph Neural Networks [26.74003742013481]
両手法の強みを生かしたグラフニューラルネットワーク(GNN)に基づく新たな攻撃を提案する。
PGDアタック,MI-FGSM,Carini,Wagnerアタックなど,最先端の敵攻撃に勝っていることを示す。
我々は、敵攻撃のより実証的な比較を可能にするために特別に設計された、新しい挑戦的なデータセットを提供する。
論文 参考訳(メタデータ) (2021-05-30T22:46:41Z) - BreakingBED -- Breaking Binary and Efficient Deep Neural Networks by
Adversarial Attacks [65.2021953284622]
CNNのホワイトボックス攻撃やブラックボックス攻撃に対する堅牢性について検討する。
結果は、蒸留されたCNN、エージェントベースの最新のprunedモデル、およびバイナライズニューラルネットワークのために示されています。
論文 参考訳(メタデータ) (2021-03-14T20:43:19Z) - Targeted Attack against Deep Neural Networks via Flipping Limited Weight
Bits [55.740716446995805]
我々は,悪質な目的で展開段階におけるモデルパラメータを修飾する新しい攻撃パラダイムについて検討する。
私たちのゴールは、特定のサンプルをサンプル修正なしでターゲットクラスに誤分類することです。
整数プログラミングにおける最新の手法を利用することで、このBIP問題を連続最適化問題として等価に再構成する。
論文 参考訳(メタデータ) (2021-02-21T03:13:27Z) - Defence against adversarial attacks using classical and quantum-enhanced
Boltzmann machines [64.62510681492994]
生成モデルはデータセットの基盤となる分布を学習し、それらは本質的に小さな摂動に対してより堅牢である。
MNISTデータセット上のBoltzmannマシンによる攻撃に対して、5%から72%の改良が見られる。
論文 参考訳(メタデータ) (2020-12-21T19:00:03Z) - Defense against Adversarial Attacks in NLP via Dirichlet Neighborhood
Ensemble [163.3333439344695]
Dirichlet Neighborhood Ensemble (DNE) は、ロバストモデルを用いて置換攻撃を防御するランダムな平滑化手法である。
DNEは、単語とその同義語で区切られた凸殻から入力文中の各単語の埋め込みベクトルをサンプリングして仮想文を生成し、訓練データでそれらを増強する。
我々は,提案手法が最近提案した防衛手法を,異なるネットワークアーキテクチャと複数のデータセット間で有意差で一貫して上回っていることを示す。
論文 参考訳(メタデータ) (2020-06-20T18:01:16Z) - GraN: An Efficient Gradient-Norm Based Detector for Adversarial and
Misclassified Examples [77.99182201815763]
ディープニューラルネットワーク(DNN)は、敵対的な例やその他のデータ摂動に対して脆弱である。
GraNは、どのDNNにも容易に適応できる時間およびパラメータ効率の手法である。
GraNは多くの問題セットで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2020-04-20T10:09:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。