論文の概要: Topological Neural Networks go Persistent, Equivariant, and Continuous
- arxiv url: http://arxiv.org/abs/2406.03164v1
- Date: Wed, 5 Jun 2024 11:56:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 18:40:12.674400
- Title: Topological Neural Networks go Persistent, Equivariant, and Continuous
- Title(参考訳): トポロジカルニューラルネットワークは永続的、同変的、連続的になる
- Authors: Yogesh Verma, Amauri H Souza, Vikas Garg,
- Abstract要約: 我々は,GNN/TNNとPHの交差において,様々な手法を仮定し,統一するフレームワークとしてTopNetsを紹介した。
TopNetは、抗体設計、分子動力学シミュレーション、薬物特性予測など、さまざまなタスクで強力なパフォーマンスを実現している。
- 参考スコア(独自算出の注目度): 6.314000948709255
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Topological Neural Networks (TNNs) incorporate higher-order relational information beyond pairwise interactions, enabling richer representations than Graph Neural Networks (GNNs). Concurrently, topological descriptors based on persistent homology (PH) are being increasingly employed to augment the GNNs. We investigate the benefits of integrating these two paradigms. Specifically, we introduce TopNets as a broad framework that subsumes and unifies various methods in the intersection of GNNs/TNNs and PH such as (generalizations of) RePHINE and TOGL. TopNets can also be readily adapted to handle (symmetries in) geometric complexes, extending the scope of TNNs and PH to spatial settings. Theoretically, we show that PH descriptors can provably enhance the expressivity of simplicial message-passing networks. Empirically, (continuous and E(n)-equivariant extensions of) TopNets achieve strong performance across diverse tasks, including antibody design, molecular dynamics simulation, and drug property prediction.
- Abstract(参考訳): トポロジカルニューラルネットワーク(TNN)は、ペアの相互作用を超えた高次リレーショナル情報を取り入れ、グラフニューラルネットワーク(GNN)よりもリッチな表現を可能にする。
同時に、永続的ホモロジー(PH)に基づくトポロジカル記述子は、GNNを増強するためにますます採用されている。
これら2つのパラダイムを統合するメリットについて検討する。
具体的には、GNN/TNNとPHの交差において、RePHINEやTOGLなどの様々な手法を仮定し、統一するフレームワークとしてTopNetsを導入する。
TopNetsは、TNNとPHのスコープを空間的設定に拡張することで、(対称性の)幾何学的コンプレックスを扱うように容易に適応することができる。
理論的には、PHディスクリプタは、単純なメッセージパッシングネットワークの表現性を向上させることができる。
実証的に、TopNetsは抗体設計、分子動力学シミュレーション、薬物特性予測など様々なタスクで強い性能を発揮する。
関連論文リスト
- E(n) Equivariant Topological Neural Networks [10.603892843083173]
グラフニューラルネットワークはペアインタラクションのモデリングに優れていますが、高階インタラクションや機能に柔軟に対応できません。
トポロジカルディープラーニング(TDL)がこの問題に対処するための有望なツールとして最近登場した。
本稿では,E(n)-同変トポロジカルニューラルネットワーク(ETNN)を紹介する。
ETNNは回転、反射、翻訳を尊重しながら幾何学的ノードの特徴を取り入れている。
論文 参考訳(メタデータ) (2024-05-24T10:55:38Z) - Deep Neural Networks via Complex Network Theory: a Perspective [3.1023851130450684]
ディープニューラルネットワーク(DNN)は、リンクと頂点が反復的にデータを処理し、タスクを亜最適に解くグラフとして表現することができる。複雑なネットワーク理論(CNT)は、統計物理学とグラフ理論を融合させ、その重みとニューロン構造を分析してニューラルネットワークを解釈する方法を提供する。
本研究では,DNNのトレーニング分布から抽出した測定値を用いて既存のCNTメトリクスを拡張し,純粋なトポロジカル解析からディープラーニングの解釈可能性へ移行する。
論文 参考訳(メタデータ) (2024-04-17T08:42:42Z) - Understanding and Improving Deep Graph Neural Networks: A Probabilistic
Graphical Model Perspective [22.82625446308785]
グラフニューラルネットワーク(GNN)の理解のための新しい視点を提案する。
本研究では,深いGNNに着目し,その理解のための新しい視点を提案する。
我々はより強力なGNN:結合グラフニューラルネットワーク(CoGNet)を設計する。
論文 参考訳(メタデータ) (2023-01-25T12:02:12Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
我々は、同種GNNが不均一グラフを扱うのに十分な能力を持つように、シンプルで効率的なフレームワークを提案する。
具体的には、エッジ型関係と自己ループ接続の重要性を埋め込むために、関係1つのパラメータのみを使用する関係埋め込みベースのグラフニューラルネットワーク(RE-GNN)を提案する。
論文 参考訳(メタデータ) (2022-09-23T05:24:18Z) - Extrapolation and Spectral Bias of Neural Nets with Hadamard Product: a
Polynomial Net Study [55.12108376616355]
NTKの研究は典型的なニューラルネットワークアーキテクチャに特化しているが、アダマール製品(NNs-Hp)を用いたニューラルネットワークには不完全である。
本研究では,ニューラルネットワークの特別なクラスであるNNs-Hpに対する有限幅Kの定式化を導出する。
我々は,カーネル回帰予測器と関連するNTKとの等価性を証明し,NTKの適用範囲を拡大する。
論文 参考訳(メタデータ) (2022-09-16T06:36:06Z) - Deep Neural Networks as Complex Networks [1.704936863091649]
我々は、重み付きグラフとしてディープニューラルネットワーク(DNN)を表現するために複雑ネットワーク理論を用いる。
我々は、DNNを動的システムとして研究するためのメトリクスを導入し、その粒度は、重みから神経細胞を含む層まで様々である。
我々の測定値が低性能ネットワークと高パフォーマンスネットワークを区別していることが示される。
論文 参考訳(メタデータ) (2022-09-12T16:26:04Z) - Simple and Efficient Heterogeneous Graph Neural Network [55.56564522532328]
不均一グラフニューラルネットワーク(HGNN)は、不均一グラフの豊富な構造的および意味的な情報をノード表現に埋め込む強力な能力を持つ。
既存のHGNNは、同種グラフ上のグラフニューラルネットワーク(GNN)から多くのメカニズム、特に注意機構と多層構造を継承する。
本稿では,これらのメカニズムを詳細に検討し,簡便かつ効率的なヘテロジニアスグラフニューラルネットワーク(SeHGNN)を提案する。
論文 参考訳(メタデータ) (2022-07-06T10:01:46Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
我々は、勾配降下訓練におけるディープニューラルネットワーク(DNN)の収束に対する接続パターンの影響を理論的に特徴づける。
接続パターンの単純なフィルタリングによって、評価対象のモデルの数を削減できることが示される。
論文 参考訳(メタデータ) (2022-05-11T17:43:54Z) - Universal approximation property of invertible neural networks [76.95927093274392]
Invertible Neural Network (INN) は、設計によって可逆性を持つニューラルネットワークアーキテクチャである。
その可逆性とヤコビアンのトラクタビリティのおかげで、IGNは確率的モデリング、生成的モデリング、表現的学習など、さまざまな機械学習応用がある。
論文 参考訳(メタデータ) (2022-04-15T10:45:26Z) - AM-GCN: Adaptive Multi-channel Graph Convolutional Networks [85.0332394224503]
グラフ畳み込みネットワーク(GCN)は,豊富な情報を持つ複雑なグラフにおいて,ノードの特徴と位相構造を最適に統合できるかどうかを検討する。
半教師付き分類(AM-GCN)のための適応型マルチチャネルグラフ畳み込みネットワークを提案する。
実験の結果,AM-GCNはノードの特徴とトポロジ的構造の両方から最も相関性の高い情報を抽出することがわかった。
論文 参考訳(メタデータ) (2020-07-05T08:16:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。