論文の概要: CommonPower: Supercharging Machine Learning for Smart Grids
- arxiv url: http://arxiv.org/abs/2406.03231v1
- Date: Wed, 5 Jun 2024 13:06:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 18:20:44.071795
- Title: CommonPower: Supercharging Machine Learning for Smart Grids
- Title(参考訳): CommonPower: スマートグリッドのためのスーパーチャージ機械学習
- Authors: Michael Eichelbeck, Hannah Markgraf, Matthias Althoff,
- Abstract要約: PythonツールのCommonPowerは、これらのニーズに対処する最初のモジュラーフレームワークである。
CommonPowerはシングルエージェントとマルチエージェントのRLトレーニングアルゴリズムのための統一インターフェースを提供する。
システム方程式の記号表現に基づくモデル予測制御アプローチが組み込まれている。
- 参考スコア(独自算出の注目度): 7.133681867718039
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The growing complexity of power system management has led to an increased interest in the use of reinforcement learning (RL). However, no tool for comprehensive and realistic benchmarking of RL in smart grids exists. One prerequisite for such a comparison is a safeguarding mechanism since vanilla RL controllers can not guarantee the satisfaction of system constraints. Other central requirements include flexible modeling of benchmarking scenarios, credible baselines, and the possibility to investigate the impact of forecast uncertainties. Our Python tool CommonPower is the first modular framework addressing these needs. CommonPower offers a unified interface for single-agent and multi-agent RL training algorithms and includes a built-in model predictive control approach based on a symbolic representation of the system equations. This makes it possible to combine model predictive controllers with RL controllers in the same system. Leveraging the symbolic system model, CommonPower facilitates the study of safeguarding strategies via the flexible formulation of safety layers. Furthermore equipped with a generic forecasting interface, CommonPower constitutes a versatile tool significantly augmenting the exploration of safe RL controllers in smart grids on several dimensions.
- Abstract(参考訳): 電力系統管理の複雑さの増大により、強化学習(RL)の利用への関心が高まっている。
しかし、スマートグリッドにおけるRLの総合的で現実的なベンチマークのためのツールは存在しない。
このような比較の前提条件の1つは、バニラRLコントローラがシステム制約の満足度を保証できないため、保護機構である。
その他の中心的な要件としては、ベンチマークシナリオのフレキシブルなモデリング、信頼性の高いベースライン、予測の不確実性の影響を調査する可能性などがある。
PythonツールのCommonPowerは、これらのニーズに対処する最初のモジュラーフレームワークです。
CommonPowerはシングルエージェントとマルチエージェントのRLトレーニングアルゴリズムのための統一インターフェースを提供し、システム方程式の記号表現に基づくモデル予測制御アプローチを内蔵している。
これにより、モデル予測コントローラとRLコントローラを同一システムで組み合わせることができる。
シンボリックシステムモデルを活用することで、CommonPowerは安全層のフレキシブルな定式化を通じて安全戦略の研究を促進する。
さらに汎用的な予測インタフェースを備えたCommonPowerは,複数次元のスマートグリッドにおける安全なRLコントローラの探索を著しく強化する汎用ツールである。
関連論文リスト
- Large Language Model-Enhanced Reinforcement Learning for Generic Bus Holding Control Strategies [12.599164162404994]
本研究では,Large Language Models(LLMs)の文脈内学習と推論機能を活用した自動報酬生成パラダイムを提案する。
提案するLLM拡張RLパラダイムの実現可能性を評価するため,合成単線システムや実世界の多線システムなど,様々なバス保持制御シナリオに適用した。
論文 参考訳(メタデータ) (2024-10-14T07:10:16Z) - Model-Based RL for Mean-Field Games is not Statistically Harder than Single-Agent RL [57.745700271150454]
モデルに基づく関数近似を用いた平均フィールドゲーム(MFG)における強化学習のサンプル複雑性について検討した。
本稿では、モデルクラスの複雑性を特徴付けるためのより効果的な概念である部分モデルベースエルダー次元(P-MBED)を紹介する。
論文 参考訳(メタデータ) (2024-02-08T14:54:47Z) - Real-World Implementation of Reinforcement Learning Based Energy
Coordination for a Cluster of Households [3.901860248668672]
本研究では, 住宅8棟の電力消費調整における強化学習(RL)の有効性について検討した。
以上の結果から,データ駆動方式で学習したRLに基づくランキングの有効性が示された。
論文 参考訳(メタデータ) (2023-10-29T21:10:38Z) - RL + Model-based Control: Using On-demand Optimal Control to Learn Versatile Legged Locomotion [16.800984476447624]
本稿では,モデルに基づく最適制御と強化学習を組み合わせた制御フレームワークを提案する。
我々は、一連の実験を通じて、フレームワークの堅牢性と制御性を検証する。
本フレームワークは,多様な次元を持つロボットに対する制御ポリシーのトレーニングを,無力的に支援する。
論文 参考訳(メタデータ) (2023-05-29T01:33:55Z) - Energy Management of Multi-mode Plug-in Hybrid Electric Vehicle using
Multi-agent Deep Reinforcement Learning [6.519522573636577]
多モードプラグインハイブリッド電気自動車(PHEV)技術は、脱炭に寄与する経路の1つである。
本稿では,多モードPHEVのエネルギー管理のためのマルチエージェント深部強化学習(MADRL)制御法について検討する。
統合DDPG設定と0.2の関連性比を用いて、MADRLシステムはシングルエージェント学習システムと比較して最大4%のエネルギーを節約でき、従来のルールベースシステムに比べて最大23.54%のエネルギーを節約できる。
論文 参考訳(メタデータ) (2023-03-16T21:31:55Z) - Flexible Attention-Based Multi-Policy Fusion for Efficient Deep
Reinforcement Learning [78.31888150539258]
強化学習(RL)エージェントは、長い間、人間の学習の効率にアプローチしようとしてきた。
RLにおける以前の研究は、エージェントがサンプル効率を改善するために外部知識ポリシーを取り入れていた。
我々は,複数の知識ポリシーを融合させたRLパラダイムであるKGRL(Knowledge-Grounded RL)について述べる。
論文 参考訳(メタデータ) (2022-10-07T17:56:57Z) - Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels [112.63440666617494]
強化学習アルゴリズムは成功するが、エージェントと環境の間の大量の相互作用を必要とする。
本稿では,教師なしモデルベースRLを用いてエージェントを事前学習する手法を提案する。
我々はReal-Word RLベンチマークにおいて、適応中の環境摂動に対する抵抗性を示唆し、堅牢な性能を示す。
論文 参考訳(メタデータ) (2022-09-24T14:22:29Z) - Skip Training for Multi-Agent Reinforcement Learning Controller for
Industrial Wave Energy Converters [94.84709449845352]
近年のウェーブ・エナジー・コンバータ(WEC)は、発電を最大化するために複数の脚と発電機を備えている。
従来のコントローラは複雑な波のパターンを捕捉する制限を示しており、コントローラはエネルギー捕獲を効率的に最大化する必要がある。
本稿では,従来のスプリングダンパよりも優れたマルチエージェント強化学習コントローラ(MARL)を提案する。
論文 参考訳(メタデータ) (2022-09-13T00:20:31Z) - Distributional Reinforcement Learning for Multi-Dimensional Reward
Functions [91.88969237680669]
多次元分布DQN(MD3QN)を導入し、複数の報酬源からの共振分布をモデル化する。
関節分布モデリングの副産物として、MD3QNは各報酬源に対するリターンのランダム性を捉えることができる。
実験では,リッチな相関型報酬関数を持つ環境下での連立戻り分布を精度良くモデル化した。
論文 参考訳(メタデータ) (2021-10-26T11:24:23Z) - Improving Robustness of Reinforcement Learning for Power System Control
with Adversarial Training [71.7750435554693]
電力系統制御のために提案された最先端のRLエージェントが敵攻撃に対して脆弱であることを示す。
具体的には、敵のマルコフ決定プロセスを用いて攻撃方針を学習し、攻撃の有効性を実証する。
本稿では,RLエージェントの攻撃に対する堅牢性を高め,実行不可能な運用上の決定を回避するために,敵の訓練を利用することを提案する。
論文 参考訳(メタデータ) (2021-10-18T00:50:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。