Programming tools for Analogue Quantum Computing in the High-Performance Computing Context -- A Review
- URL: http://arxiv.org/abs/2501.16943v1
- Date: Tue, 28 Jan 2025 13:36:52 GMT
- Title: Programming tools for Analogue Quantum Computing in the High-Performance Computing Context -- A Review
- Authors: Mateusz Meller, Vendel Szeremi, Oliver Thomson Brown,
- Abstract summary: We conduct a comprehensive survey of existing quantum software tools with analogue capabilities.
We introduce a classification and rating system to assess the readiness of these tools for HPC integration.
- Score: 0.0
- License:
- Abstract: Recent advances in quantum computing have brought us closer to realizing the potential of this transformative technology. While significant strides have been made in quantum error correction, many challenges persist, particularly in the realm of noise and scalability. Analogue quantum computing schemes, such as Analogue Hamiltonian Simulation and Quantum Annealing, offer a promising approach to address these limitations. By operating at a higher level of abstraction, these schemes can simplify the development of large-scale quantum algorithms. To fully harness the power of quantum computers, they must be seamlessly integrated with traditional high-performance computing (HPC) systems. While substantial research has focused on the integration of circuit-based quantum computers with HPC, the integration of analogue quantum computers remains relatively unexplored. This paper aims to bridge this gap by contributing in the following way: Comprehensive Survey: We conduct a comprehensive survey of existing quantum software tools with analogue capabilities. Readiness Assessment: We introduce a classification and rating system to assess the readiness of these tools for HPC integration. Gap Identification and Recommendations: We identify critical gaps in the landscape of analogue quantum programming models and propose actionable recommendations for future research and development.
Related papers
- Comprehensive Survey of QML: From Data Analysis to Algorithmic Advancements [2.5686697584463025]
Quantum Machine Learning represents a paradigm shift at the intersection of Quantum Computing and Machine Learning.
The field faces significant challenges, including hardware constraints, noise, and limited qubit coherence.
This survey aims to provide a foundational resource for advancing Quantum Machine Learning toward practical, real-world applications.
arXiv Detail & Related papers (2025-01-16T13:25:49Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Assessing and Advancing the Potential of Quantum Computing: A NASA Case Study [11.29246196323319]
We describe NASA's work in assessing and advancing the potential of quantum computing.
We discuss advances in algorithms, both near- and longer-term, and the results of our explorations on current hardware and with simulations.
This work also includes physics-inspired classical algorithms that can be used at application scale today.
arXiv Detail & Related papers (2024-06-21T19:05:42Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Integration of Quantum Accelerators with High Performance Computing -- A
Review of Quantum Programming Tools [0.8477185635891722]
This study aims to characterize existing quantum programming tools (QPTs) from an HPC perspective.
It investigates if existing QPTs have the potential to be efficiently integrated with classical computing models.
This work structures a set of criteria into an analysis blueprint that enables HPC scientists to assess whether a QPT is suitable for the quantum-accelerated classical application.
arXiv Detail & Related papers (2023-09-12T12:24:12Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Near-Term Quantum Computing Techniques: Variational Quantum Algorithms,
Error Mitigation, Circuit Compilation, Benchmarking and Classical Simulation [5.381727213688375]
We are still a long way from reaching the maturity of a full-fledged quantum computer.
An outstanding challenge is to come up with an application that can reliably carry out a nontrivial task.
Several near-term quantum computing techniques have been proposed to characterize and mitigate errors.
arXiv Detail & Related papers (2022-11-16T07:53:15Z) - Evolution of Quantum Computing: A Systematic Survey on the Use of
Quantum Computing Tools [5.557009030881896]
We conduct a systematic survey and categorize papers, tools, frameworks, platforms that facilitate quantum computing.
We discuss the current essence, identify open challenges and provide future research direction.
We conclude that scores of frameworks, tools and platforms are emerged in the past few years, improvement of currently available facilities would exploit the research activities in the quantum research community.
arXiv Detail & Related papers (2022-04-04T21:21:12Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.