論文の概要: CLMASP: Coupling Large Language Models with Answer Set Programming for Robotic Task Planning
- arxiv url: http://arxiv.org/abs/2406.03367v1
- Date: Wed, 5 Jun 2024 15:21:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 17:41:32.764724
- Title: CLMASP: Coupling Large Language Models with Answer Set Programming for Robotic Task Planning
- Title(参考訳): CLMASP:ロボットタスク計画のための大規模言語モデルと解集合プログラミングの結合
- Authors: Xinrui Lin, Yangfan Wu, Huanyu Yang, Yu Zhang, Yanyong Zhang, Jianmin Ji,
- Abstract要約: 大規模言語モデル(LLM)には、幅広い基礎知識と適度な推論能力がある。
LLM生成したプランを一定の制約で特定のロボットに実行させることは困難である。
本稿では,LLM と Answer Set Programming (ASP) を結合して制限を克服するアプローチである CLMASP を紹介する。
- 参考スコア(独自算出の注目度): 9.544073786800706
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large Language Models (LLMs) possess extensive foundational knowledge and moderate reasoning abilities, making them suitable for general task planning in open-world scenarios. However, it is challenging to ground a LLM-generated plan to be executable for the specified robot with certain restrictions. This paper introduces CLMASP, an approach that couples LLMs with Answer Set Programming (ASP) to overcome the limitations, where ASP is a non-monotonic logic programming formalism renowned for its capacity to represent and reason about a robot's action knowledge. CLMASP initiates with a LLM generating a basic skeleton plan, which is subsequently tailored to the specific scenario using a vector database. This plan is then refined by an ASP program with a robot's action knowledge, which integrates implementation details into the skeleton, grounding the LLM's abstract outputs in practical robot contexts. Our experiments conducted on the VirtualHome platform demonstrate CLMASP's efficacy. Compared to the baseline executable rate of under 2% with LLM approaches, CLMASP significantly improves this to over 90%.
- Abstract(参考訳): 大規模言語モデル(LLM)は、幅広い基礎知識と適度な推論能力を持ち、オープンワールドシナリオにおける一般的なタスク計画に適している。
しかし,LLM生成したプランを一定の制約で特定のロボットに実行させることは困難である。
本稿では,LLMをAnswer Set Programming(ASP)と組み合わせて制限を克服するアプローチであるCLMASPを紹介する。
CLMASPは、基本的なスケルトンプランを生成するLLMで開始され、その後、ベクトルデータベースを使用して特定のシナリオに合わせて調整される。
この計画は、ロボットの行動知識を持つASPプログラムによって洗練され、実装の詳細をスケルトンに統合し、LLMの抽象的な出力を実用的なロボットコンテキストで基礎付ける。
VirtualHomeプラットフォーム上で実施した実験は,CLMASPの有効性を実証するものである。
LLMASPの基準実行率は2%以下であるのに対し、CLMASPは90%以上に大幅に改善した。
関連論文リスト
- In-Context Learning Enables Robot Action Prediction in LLMs [52.285739178561705]
本稿では,ロボットの動作を直接予測する,オフザシェルフテキストのみの大規模言語モデルを実現するフレームワークであるRoboPromptを紹介する。
われわれのアプローチはまず、エピソードから重要な瞬間を捉えている。
我々は、初期オブジェクトのポーズだけでなく、エンドエフェクタアクションも抽出し、どちらもテキスト記述に変換する。
これにより、LLMはテスト時にロボットの動作を直接予測できる。
論文 参考訳(メタデータ) (2024-10-16T17:56:49Z) - Scaling Up Natural Language Understanding for Multi-Robots Through the Lens of Hierarchy [8.180994118420053]
長期計画には不確実性蓄積、計算複雑性、遅延報酬、不完全情報といった課題が伴う。
本研究では,タスク階層を人間の指示から活用し,マルチロボット計画を容易にする手法を提案する。
論文 参考訳(メタデータ) (2024-08-15T14:46:13Z) - From Words to Actions: Unveiling the Theoretical Underpinnings of LLM-Driven Autonomous Systems [59.40480894948944]
大規模言語モデル (LLM) は、物理世界の意思決定問題を解くことができる。
このモデルの下で、LLM Plannerは、プロンプトを介して言語ベースのサブゴールを反復的に生成することにより、部分的に観測可能なマルコフ決定プロセス(POMDP)をナビゲートする。
我々は,事前学習したLLMプランナーが,文脈内学習を通じてベイズ的集計模倣学習(BAIL)を効果的に行うことを証明した。
論文 参考訳(メタデータ) (2024-05-30T09:42:54Z) - Empowering Large Language Models on Robotic Manipulation with Affordance Prompting [23.318449345424725]
大規模な言語モデルは、制御シーケンスを適切に生成することで物理世界と相互作用することができない。
既存のLLMベースのアプローチでは、事前定義されたスキルや事前訓練されたサブ政治に頼ることでこの問題を回避することができる。
サブタスクプランナとモーションコントローラの両方をLLM+A(ffordance)と呼ぶフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-17T03:06:32Z) - LanguageMPC: Large Language Models as Decision Makers for Autonomous
Driving [87.1164964709168]
この作業では、複雑な自律運転シナリオの意思決定コンポーネントとして、Large Language Models(LLM)を採用している。
大規模実験により,提案手法は単車載タスクのベースラインアプローチを一貫して超えるだけでなく,複数車載コーディネートにおいても複雑な運転動作の処理にも有効であることが示された。
論文 参考訳(メタデータ) (2023-10-04T17:59:49Z) - Interactively Robot Action Planning with Uncertainty Analysis and Active
Questioning by Large Language Model [6.695536752781623]
ロボット行動計画のための大規模言語モデル(LLM)が活発に研究されている。
自然言語によるLLMへの指示には、タスクコンテキストによる曖昧さと情報の欠如が含まれる。
本研究では,人間に質問することで,LLMが行方不明情報を分析・収集できる対話型ロボット行動計画法を提案する。
論文 参考訳(メタデータ) (2023-08-30T00:54:44Z) - Instruct2Act: Mapping Multi-modality Instructions to Robotic Actions
with Large Language Model [63.66204449776262]
Instruct2Actは、ロボット操作タスクのシーケンシャルアクションにマルチモーダル命令をマッピングするフレームワークである。
我々のアプローチは、様々な命令のモダリティや入力タイプを調節する上で、調整可能で柔軟なものである。
我々のゼロショット法は、いくつかのタスクにおいて、最先端の学習ベースのポリシーよりも優れていた。
論文 参考訳(メタデータ) (2023-05-18T17:59:49Z) - Plansformer: Generating Symbolic Plans using Transformers [24.375997526106246]
大規模言語モデル(LLM)は、自然言語処理(NLP)分野を著しく進歩させ、活発な研究対象となっている。
プランフォーマーは計画上の問題に微調整され、知識工学の努力を減らし、正確さと長さの点で良好な行動で計画を生成することができる。
Plansformerの1つの構成では、97%の有効なプランが達成されます。
論文 参考訳(メタデータ) (2022-12-16T19:06:49Z) - ProgPrompt: Generating Situated Robot Task Plans using Large Language
Models [68.57918965060787]
大規模言語モデル(LLM)は、タスク計画中の潜在的な次のアクションを評価するために使用することができる。
本稿では, プログラム型LCMプロンプト構造を用いて, 配置環境間での計画生成機能を実現する。
論文 参考訳(メタデータ) (2022-09-22T20:29:49Z) - Neuro-Symbolic Causal Language Planning with Commonsense Prompting [67.06667162430118]
言語プランニングは、より単純な低レベルステップに分解することで、複雑な高レベルな目標を実装することを目的としている。
以前の手法では、大規模な言語モデルからそのような能力を得るために、手動の例えか注釈付きプログラムが必要である。
本稿では,LLMからの手続き的知識をコモンセンス・インフュージョン・プロンプトにより引き起こすニューロシンボリック因果言語プランナー(CLAP)を提案する。
論文 参考訳(メタデータ) (2022-06-06T22:09:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。