論文の概要: What Should Embeddings Embed? Autoregressive Models Represent Latent Generating Distributions
- arxiv url: http://arxiv.org/abs/2406.03707v1
- Date: Thu, 6 Jun 2024 03:06:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 18:35:44.948776
- Title: What Should Embeddings Embed? Autoregressive Models Represent Latent Generating Distributions
- Title(参考訳): 埋め込みは何を組み込むべきか? 潜伏分布を表わす自己回帰モデル
- Authors: Liyi Zhang, Michael Y. Li, Thomas L. Griffiths,
- Abstract要約: 埋め込みの最適な内容を特定することができる3つの設定を同定する。
次に、これらの3種類の潜伏生成分布をトランスフォーマーがエンコードしていることを示す実験的検討を行った。
- 参考スコア(独自算出の注目度): 3.5595258376041814
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Autoregressive language models have demonstrated a remarkable ability to extract latent structure from text. The embeddings from large language models have been shown to capture aspects of the syntax and semantics of language. But what {\em should} embeddings represent? We connect the autoregressive prediction objective to the idea of constructing predictive sufficient statistics to summarize the information contained in a sequence of observations, and use this connection to identify three settings where the optimal content of embeddings can be identified: independent identically distributed data, where the embedding should capture the sufficient statistics of the data; latent state models, where the embedding should encode the posterior distribution over states given the data; and discrete hypothesis spaces, where the embedding should reflect the posterior distribution over hypotheses given the data. We then conduct empirical probing studies to show that transformers encode these three kinds of latent generating distributions, and that they perform well in out-of-distribution cases and without token memorization in these settings.
- Abstract(参考訳): 自己回帰言語モデルはテキストから潜在構造を抽出する顕著な能力を示した。
大規模な言語モデルからの埋め込みは、言語の構文と意味論の側面を捉えるために示されている。
しかし、埋め込みは何を表現すべきなのか?
本研究では, 自己回帰予測の対象を, 観測データ列に含まれる情報を要約するために, 予測可能な統計情報を構築するアイデアに結びつけるとともに, この接続を用いて, 埋め込みの最適な内容を特定することができる3つの設定を同定する。
次に, 変圧器がこれら3種類の潜伏生成分布を符号化し, 分布外の場合, トークンを記憶しない場合において, 良好な性能を示すことを示す実験的検討を行った。
関連論文リスト
- A Likelihood Based Approach to Distribution Regression Using Conditional Deep Generative Models [6.647819824559201]
本研究では,条件付き深部生成モデルの推定のための可能性に基づくアプローチの大規模サンプル特性について検討する。
その結果,条件分布を推定するための最大極大推定器の収束率を導いた。
論文 参考訳(メタデータ) (2024-10-02T20:46:21Z) - Sub-graph Based Diffusion Model for Link Prediction [43.15741675617231]
拡散確率モデル(Denoising Diffusion Probabilistic Models, DDPM)は、例外的な品質を持つ同時代の生成モデルである。
本研究では,ベイズ式による確率推定過程を分解するために,専用設計を用いたリンク予測のための新しい生成モデルを構築した。
提案手法は,(1)再トレーニングを伴わないデータセット間の転送可能性,(2)限られたトレーニングデータに対する有望な一般化,(3)グラフ敵攻撃に対する堅牢性など,多くの利点を示す。
論文 参考訳(メタデータ) (2024-09-13T02:23:55Z) - Identifiable Latent Neural Causal Models [82.14087963690561]
因果表現学習は、低レベルの観測データから潜伏した高レベルの因果表現を明らかにすることを目指している。
因果表現の識別可能性に寄与する分布シフトのタイプを決定する。
本稿では,本研究の成果を実用的なアルゴリズムに翻訳し,信頼性の高い潜在因果表現の取得を可能にする。
論文 参考訳(メタデータ) (2024-03-23T04:13:55Z) - The Distributional Hypothesis Does Not Fully Explain the Benefits of
Masked Language Model Pretraining [27.144616560712493]
マスク付き言語モデルを用いて事前学習したモデルのより優れたサンプル効率とより優れた一般化能力は、事前学習したデータの分布特性に符号化された意味的類似性に起因するかを検討する。
本研究は,モデル事前学習の限定的な理解と今後の研究方向性を示すものである。
論文 参考訳(メタデータ) (2023-10-25T00:31:29Z) - Performative Prediction with Neural Networks [24.880495520422]
パフォーマンス予測は、予測するデータに影響を与えるモデルを学習するためのフレームワークである。
繰り返しリスク最小化法を用いて、性能的に安定な分類器を見つけるための標準収束結果は、データの分布がモデルのパラメータに連続であることを仮定する。
この研究では、データ分布はモデルの予測に関してリプシッツ連続であると仮定する。
論文 参考訳(メタデータ) (2023-04-14T01:12:48Z) - Score Approximation, Estimation and Distribution Recovery of Diffusion
Models on Low-Dimensional Data [68.62134204367668]
本稿では,未知の低次元線形部分空間上でデータをサポートする場合の拡散モデルのスコア近似,推定,分布回復について検討する。
適切に選択されたニューラルネットワークアーキテクチャでは、スコア関数を正確に近似し、効率的に推定することができる。
推定スコア関数に基づいて生成された分布は、データ幾何学構造を捕捉し、データ分布の近傍に収束する。
論文 参考訳(メタデータ) (2023-02-14T17:02:35Z) - Debiasing Vision-Language Models via Biased Prompts [79.04467131711775]
本稿では,テキスト埋め込みにおけるバイアスのある方向を投影することで,視覚言語基盤モデルを疎外する一般的な手法を提案する。
偏平投影行列を組み込んだテキストのみをデバイアスすることで、ロバストな分類器と公正な生成モデルが得られることを示す。
論文 参考訳(メタデータ) (2023-01-31T20:09:33Z) - MAUVE Scores for Generative Models: Theory and Practice [95.86006777961182]
本報告では,テキストや画像の生成モデルで発生するような分布のペア間の比較尺度であるMAUVEについて述べる。
我々は、MAUVEが人間の文章の分布と現代のニューラル言語モデルとのギャップを定量化できることを発見した。
我々は、MAUVEが既存のメトリクスと同等以上の画像の既知の特性を識別できることを視覚領域で実証する。
論文 参考訳(メタデータ) (2022-12-30T07:37:40Z) - Data-SUITE: Data-centric identification of in-distribution incongruous
examples [81.21462458089142]
Data-SUITEは、ID(In-distriion)データの不連続領域を特定するためのデータ中心のフレームワークである。
我々は,Data-SUITEの性能保証とカバレッジ保証を実証的に検証する。
論文 参考訳(メタデータ) (2022-02-17T18:58:31Z) - Exploring Lexical Irregularities in Hypothesis-Only Models of Natural
Language Inference [5.283529004179579]
自然言語推論(NLI)またはテキスト関連認識(RTE)は、文のペア間の関係を予測するタスクです。
包含を理解するモデルは前提と仮説の両方をエンコードするべきである。
Poliakらによる実験。
仮説でのみ観察されたパターンに対するこれらのモデルの強い好みを明らかにした。
論文 参考訳(メタデータ) (2021-01-19T01:08:06Z) - TraDE: Transformers for Density Estimation [101.20137732920718]
TraDEは自己回帰密度推定のための自己アテンションに基づくアーキテクチャである。
本稿では, 生成したサンプルを用いた回帰, 分布外検出, トレーニングデータにおける雑音に対する頑健性などのタスクについて述べる。
論文 参考訳(メタデータ) (2020-04-06T07:32:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。