論文の概要: Pi-fusion: Physics-informed diffusion model for learning fluid dynamics
- arxiv url: http://arxiv.org/abs/2406.03711v1
- Date: Thu, 6 Jun 2024 03:14:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 18:35:44.943806
- Title: Pi-fusion: Physics-informed diffusion model for learning fluid dynamics
- Title(参考訳): Pi-fusion:流体力学学習のための物理インフォームド拡散モデル
- Authors: Jing Qiu, Jiancheng Huang, Xiangdong Zhang, Zeng Lin, Minglei Pan, Zengding Liu, Fen Miao,
- Abstract要約: 流体力学における速度と圧力場の時間的進化を予測する物理インフォーム拡散モデルPi-fusionを提案する。
相反学習に基づくトレーニング戦略を導入し,流体運動の準周期パターンを学習する。
実験結果から, 提案手法は, 速度場と圧力場の時間的変化を予測する既存手法よりも有意に優れていた。
- 参考スコア(独自算出の注目度): 3.5197612808072147
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Physics-informed deep learning has been developed as a novel paradigm for learning physical dynamics recently. While general physics-informed deep learning methods have shown early promise in learning fluid dynamics, they are difficult to generalize in arbitrary time instants in real-world scenario, where the fluid motion can be considered as a time-variant trajectory involved large-scale particles. Inspired by the advantage of diffusion model in learning the distribution of data, we first propose Pi-fusion, a physics-informed diffusion model for predicting the temporal evolution of velocity and pressure field in fluid dynamics. Physics-informed guidance sampling is proposed in the inference procedure of Pi-fusion to improve the accuracy and interpretability of learning fluid dynamics. Furthermore, we introduce a training strategy based on reciprocal learning to learn the quasiperiodical pattern of fluid motion and thus improve the generalizability of the model. The proposed approach are then evaluated on both synthetic and real-world dataset, by comparing it with state-of-the-art physics-informed deep learning methods. Experimental results show that the proposed approach significantly outperforms existing methods for predicting temporal evolution of velocity and pressure field, confirming its strong generalization by drawing probabilistic inference of forward process and physics-informed guidance sampling. The proposed Pi-fusion can also be generalized in learning other physical dynamics governed by partial differential equations.
- Abstract(参考訳): 近年,物理インフォームド・ディープ・ラーニングは物理力学を学ぶための新しいパラダイムとして開発されている。
一般的な物理インフォームド・ディープラーニング法は流体力学の学習において早期に有望であることを示しているが、流体運動が大規模粒子を含む時変軌道と見なされる現実のシナリオにおいて、任意の時間瞬時に一般化することは困難である。
データ分散学習における拡散モデルの利点に着想を得て,流体力学における速度と圧力場の時間的発展を予測する物理インフォームド拡散モデルPi-fusionを提案する。
物理インフォームド・ガイダンス・サンプリングは, 学習流体力学の精度と解釈性を向上させるために, パイフュージョンの推論手順で提案される。
さらに、相互学習に基づくトレーニング戦略を導入し、流体運動の準周期パターンを学習し、モデルの一般化性を向上させる。
提案手法は,最新の物理インフォームド深層学習法と比較することにより,合成データセットと実世界のデータセットの両方で評価される。
実験結果から, 提案手法は, 速度場と圧力場の時間的変化を予測する既存の手法よりも優れており, 前進過程の確率的推定と物理インフォームドガイダンスの抽出により, その強い一般化が確認できることがわかった。
提案されたパイ融合は、偏微分方程式によって支配される他の物理力学を学ぶ際にも一般化できる。
関連論文リスト
- HelmFluid: Learning Helmholtz Dynamics for Interpretable Fluid Prediction [66.38369833561039]
HelmFluidは流体の正確かつ解釈可能な予測器である。
ヘルムホルツの定理に触発され、ヘルムホルツの力学を学ぶためにヘルム力学ブロックを設計する。
HelmDynamicsブロックをマルチスケールのマルチヘッド積分アーキテクチャに埋め込むことで、HelmFluidは学習したHelmholtzダイナミクスを複数の空間スケールで時間次元に沿って統合することができる。
論文 参考訳(メタデータ) (2023-10-16T16:38:32Z) - Machine learning enabled experimental design and parameter estimation
for ultrafast spin dynamics [54.172707311728885]
機械学習とベイズ最適実験設計(BOED)を組み合わせた方法論を提案する。
本手法は,大規模スピンダイナミクスシミュレーションのためのニューラルネットワークモデルを用いて,BOEDの正確な分布と実用計算を行う。
数値ベンチマークでは,XPFS実験の誘導,モデルパラメータの予測,実験時間内でのより情報的な測定を行う上で,本手法の優れた性能を示す。
論文 参考訳(メタデータ) (2023-06-03T06:19:20Z) - DYffusion: A Dynamics-informed Diffusion Model for Spatiotemporal
Forecasting [18.86526240105348]
本稿では,確率的予測のための拡散モデルを効率的に訓練する手法を提案する。
我々は,標準拡散モデルの前方および逆過程を模倣する時間条件補間器と予測器ネットワークを訓練する。
本手法は, 海面温度, ナビエ-ストークス流, および湧水系の複雑な力学の確率論的予測を競合的に行う。
論文 参考訳(メタデータ) (2023-06-03T02:46:31Z) - Guaranteed Conservation of Momentum for Learning Particle-based Fluid
Dynamics [96.9177297872723]
本稿では,学習物理シミュレーションにおける線形運動量を保証する新しい手法を提案する。
我々は、強い制約で運動量の保存を強制し、反対称的な連続的な畳み込み層を通して実現する。
提案手法により,学習シミュレータの物理的精度を大幅に向上させることができる。
論文 参考訳(メタデータ) (2022-10-12T09:12:59Z) - Learning to Estimate and Refine Fluid Motion with Physical Dynamics [9.258258917049845]
流体流量推定のための教師なし学習に基づく予測補正手法を提案する。
推定はまずPDE制約の光フロー予測器によって与えられ、次に物理ベースの補正器によって洗練される。
提案手法は,地上の真理情報が効果的に理解できない複雑な実世界の流体シナリオに一般化することができる。
論文 参考訳(メタデータ) (2022-06-21T15:46:49Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Physics-informed Reinforcement Learning for Perception and Reasoning
about Fluids [0.0]
本研究では,流体知覚と観測からの推論のための物理インフォームド強化学習戦略を提案する。
本研究では,コモディティカメラで自由表面を観察した未確認液体の追跡(知覚)と解析(推論)を行う手法を開発した。
論文 参考訳(メタデータ) (2022-03-11T07:01:23Z) - NeuroFluid: Fluid Dynamics Grounding with Particle-Driven Neural
Radiance Fields [65.07940731309856]
深層学習は流体のような複雑な粒子系の物理力学をモデル化する大きな可能性を示している。
本稿では,流体力学グラウンドリング(fluid dynamics grounding)として知られる,部分的に観測可能なシナリオについて考察する。
我々はNeuroFluidという2段階の異なるネットワークを提案する。
初期形状、粘度、密度が異なる流体の基礎物理学を合理的に推定することが示されている。
論文 参考訳(メタデータ) (2022-03-03T15:13:29Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
本稿では,ニューラル平均場(NMF)ダイナミクスを用いた新しい学習フレームワークを提案する。
我々のフレームワークは拡散ネットワークの構造とノード感染確率の進化を同時に学習することができる。
論文 参考訳(メタデータ) (2021-06-03T00:02:05Z) - Short- and long-term prediction of a chaotic flow: A physics-constrained
reservoir computing approach [5.37133760455631]
乱流せん断流モデルにおける極端な事象や長期速度統計を時間精度で予測する,貯留層計算に基づく物理制約型機械学習手法を提案する。
両手法の組み合わせは, 乱流の自己持続過程モデルにおいて, 速度統計を正確に再現し, 極端な事象の発生と振幅を予測することができることを示す。
論文 参考訳(メタデータ) (2021-02-15T12:29:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。