A Survey on Medical Large Language Models: Technology, Application, Trustworthiness, and Future Directions
- URL: http://arxiv.org/abs/2406.03712v1
- Date: Thu, 6 Jun 2024 03:15:13 GMT
- Title: A Survey on Medical Large Language Models: Technology, Application, Trustworthiness, and Future Directions
- Authors: Lei Liu, Xiaoyan Yang, Junchi Lei, Xiaoyang Liu, Yue Shen, Zhiqiang Zhang, Peng Wei, Jinjie Gu, Zhixuan Chu, Zhan Qin, Kui Ren,
- Abstract summary: Large language models (LLMs) have received substantial attention due to their impressive capabilities for generating and understanding human-level language.
LLMs have emerged as an innovative and powerful adjunct in the medical field, transforming traditional practices and heralding a new era of enhanced healthcare services.
- Score: 31.04135502285516
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs), such as GPT series models, have received substantial attention due to their impressive capabilities for generating and understanding human-level language. More recently, LLMs have emerged as an innovative and powerful adjunct in the medical field, transforming traditional practices and heralding a new era of enhanced healthcare services. This survey provides a comprehensive overview of Medical Large Language Models (Med-LLMs), outlining their evolution from general to the medical-specific domain (i.e, Technology and Application), as well as their transformative impact on healthcare (e.g., Trustworthiness and Safety). Concretely, starting from the fundamental history and technology of LLMs, we first delve into the progressive adaptation and refinements of general LLM models in the medical domain, especially emphasizing the advanced algorithms that boost the LLMs' performance in handling complicated medical environments, including clinical reasoning, knowledge graph, retrieval-augmented generation, human alignment, and multi-modal learning. Secondly, we explore the extensive applications of Med-LLMs across domains such as clinical decision support, report generation, and medical education, illustrating their potential to streamline healthcare services and augment patient outcomes. Finally, recognizing the imperative and responsible innovation, we discuss the challenges of ensuring fairness, accountability, privacy, and robustness in Med-LLMs applications. Finally, we conduct a concise discussion for anticipating possible future trajectories of Med-LLMs, identifying avenues for the prudent expansion of Med-LLMs. By consolidating above-mentioned insights, this review seeks to provide a comprehensive investigation of the potential strengths and limitations of Med-LLMs for professionals and researchers, ensuring a responsible landscape in the healthcare setting.
Related papers
- Demystifying Large Language Models for Medicine: A Primer [50.83806796466396]
Large language models (LLMs) represent a transformative class of AI tools capable of revolutionizing various aspects of healthcare.
This tutorial aims to equip healthcare professionals with the tools necessary to effectively integrate LLMs into clinical practice.
arXiv Detail & Related papers (2024-10-24T15:41:56Z) - Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KARE is a novel framework that integrates knowledge graph (KG) community-level retrieval with large language models (LLMs) reasoning.
Extensive experiments demonstrate that KARE outperforms leading models by up to 10.8-15.0% on MIMIC-III and 12.6-12.7% on MIMIC-IV for mortality and readmission predictions.
arXiv Detail & Related papers (2024-10-06T18:46:28Z) - The Role of Language Models in Modern Healthcare: A Comprehensive Review [2.048226951354646]
The application of large language models (LLMs) in healthcare has gained significant attention.
This review examines the trajectory of language models from their early stages to the current state-of-the-art LLMs.
arXiv Detail & Related papers (2024-09-25T12:15:15Z) - From Text to Multimodality: Exploring the Evolution and Impact of Large Language Models in Medical Practice [11.196196955468992]
Large Language Models (LLMs) have rapidly evolved from text-based systems to multimodal platforms.
We examine the current landscape of MLLMs in healthcare, analyzing their applications across clinical decision support, medical imaging, patient engagement, and research.
arXiv Detail & Related papers (2024-09-14T02:35:29Z) - Large Language Models for Medicine: A Survey [31.720633684205424]
Large language models (LLMs) have been developed to address challenges in the digital economy's landscape of digital intelligence.
This paper focuses on the requirements and applications of medical LLMs.
arXiv Detail & Related papers (2024-05-20T02:32:26Z) - A Survey on Large Language Models for Critical Societal Domains: Finance, Healthcare, and Law [65.87885628115946]
Large language models (LLMs) are revolutionizing the landscapes of finance, healthcare, and law.
We highlight the instrumental role of LLMs in enhancing diagnostic and treatment methodologies in healthcare, innovating financial analytics, and refining legal interpretation and compliance strategies.
We critically examine the ethics for LLM applications in these fields, pointing out the existing ethical concerns and the need for transparent, fair, and robust AI systems.
arXiv Detail & Related papers (2024-05-02T22:43:02Z) - Large language models in healthcare and medical domain: A review [4.456243157307507]
Large language models (LLMs) provide proficient responses to free-text queries.
This review explores the potential of LLMs to amplify the efficiency and effectiveness of diverse healthcare applications.
arXiv Detail & Related papers (2023-12-12T20:54:51Z) - ChiMed-GPT: A Chinese Medical Large Language Model with Full Training Regime and Better Alignment to Human Preferences [51.66185471742271]
We propose ChiMed-GPT, a benchmark LLM designed explicitly for Chinese medical domain.
ChiMed-GPT undergoes a comprehensive training regime with pre-training, SFT, and RLHF.
We analyze possible biases through prompting ChiMed-GPT to perform attitude scales regarding discrimination of patients.
arXiv Detail & Related papers (2023-11-10T12:25:32Z) - Large Language Models Illuminate a Progressive Pathway to Artificial
Healthcare Assistant: A Review [16.008511195589925]
Large language models (LLMs) have shown promising capabilities in mimicking human-level language comprehension and reasoning.
This paper provides a comprehensive review on the applications and implications of LLMs in medicine.
arXiv Detail & Related papers (2023-11-03T13:51:36Z) - Artificial General Intelligence for Medical Imaging Analysis [92.3940918983821]
Large-scale Artificial General Intelligence (AGI) models have achieved unprecedented success in a variety of general domain tasks.
These models face notable challenges arising from the medical field's inherent complexities and unique characteristics.
This review aims to offer insights into the future implications of AGI in medical imaging, healthcare, and beyond.
arXiv Detail & Related papers (2023-06-08T18:04:13Z) - Privacy-preserving machine learning for healthcare: open challenges and
future perspectives [72.43506759789861]
We conduct a review of recent literature concerning Privacy-Preserving Machine Learning (PPML) for healthcare.
We primarily focus on privacy-preserving training and inference-as-a-service.
The aim of this review is to guide the development of private and efficient ML models in healthcare.
arXiv Detail & Related papers (2023-03-27T19:20:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.