Evaluating Durability: Benchmark Insights into Multimodal Watermarking
- URL: http://arxiv.org/abs/2406.03728v1
- Date: Thu, 6 Jun 2024 03:57:08 GMT
- Title: Evaluating Durability: Benchmark Insights into Multimodal Watermarking
- Authors: Jielin Qiu, William Han, Xuandong Zhao, Shangbang Long, Christos Faloutsos, Lei Li,
- Abstract summary: We study robustness of watermarked content generated by image and text generation models against common real-world image corruptions and text perturbations.
Our results could pave the way for the development of more robust watermarking techniques in the future.
- Score: 36.12198778931536
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the development of large models, watermarks are increasingly employed to assert copyright, verify authenticity, or monitor content distribution. As applications become more multimodal, the utility of watermarking techniques becomes even more critical. The effectiveness and reliability of these watermarks largely depend on their robustness to various disturbances. However, the robustness of these watermarks in real-world scenarios, particularly under perturbations and corruption, is not well understood. To highlight the significance of robustness in watermarking techniques, our study evaluated the robustness of watermarked content generated by image and text generation models against common real-world image corruptions and text perturbations. Our results could pave the way for the development of more robust watermarking techniques in the future. Our project website can be found at \url{https://mmwatermark-robustness.github.io/}.
Related papers
- Dynamic watermarks in images generated by diffusion models [46.1135899490656]
High-fidelity text-to-image diffusion models have revolutionized visual content generation, but their widespread use raises significant ethical concerns.
We propose a novel multi-stage watermarking framework for diffusion models, designed to establish copyright and trace generated images back to their source.
Our work advances the field of AI-generated content security by providing a scalable solution for model ownership verification and misuse prevention.
arXiv Detail & Related papers (2025-02-13T03:23:17Z) - On the Coexistence and Ensembling of Watermarks [93.15379331904602]
We find that various open-source watermarks can coexist with only minor impacts on image quality and decoding robustness.
We show how ensembling can increase the overall message capacity and enable new trade-offs between capacity, accuracy, robustness and image quality, without needing to retrain the base models.
arXiv Detail & Related papers (2025-01-29T00:37:06Z) - ROBIN: Robust and Invisible Watermarks for Diffusion Models with Adversarial Optimization [15.570148419846175]
Existing watermarking methods face the challenge of balancing robustness and concealment.
This paper introduces a watermark hiding process to actively achieve concealment, thus allowing the embedding of stronger watermarks.
Experiments on various diffusion models demonstrate the watermark remains verifiable even under significant image tampering.
arXiv Detail & Related papers (2024-11-06T12:14:23Z) - Certifiably Robust Image Watermark [57.546016845801134]
Generative AI raises many societal concerns such as boosting disinformation and propaganda campaigns.
Watermarking AI-generated content is a key technology to address these concerns.
We propose the first image watermarks with certified robustness guarantees against removal and forgery attacks.
arXiv Detail & Related papers (2024-07-04T17:56:04Z) - WAVES: Benchmarking the Robustness of Image Watermarks [67.955140223443]
WAVES (Watermark Analysis Via Enhanced Stress-testing) is a benchmark for assessing image watermark robustness.
We integrate detection and identification tasks and establish a standardized evaluation protocol comprised of a diverse range of stress tests.
We envision WAVES as a toolkit for the future development of robust watermarks.
arXiv Detail & Related papers (2024-01-16T18:58:36Z) - Unbiased Watermark for Large Language Models [67.43415395591221]
This study examines how significantly watermarks impact the quality of model-generated outputs.
It is possible to integrate watermarks without affecting the output probability distribution.
The presence of watermarks does not compromise the performance of the model in downstream tasks.
arXiv Detail & Related papers (2023-09-22T12:46:38Z) - T2IW: Joint Text to Image & Watermark Generation [74.20148555503127]
We introduce a novel task for the joint generation of text to image and watermark (T2IW)
This T2IW scheme ensures minimal damage to image quality when generating a compound image by forcing the semantic feature and the watermark signal to be compatible in pixels.
We demonstrate remarkable achievements in image quality, watermark invisibility, and watermark robustness, supported by our proposed set of evaluation metrics.
arXiv Detail & Related papers (2023-09-07T16:12:06Z) - ReMark: Receptive Field based Spatial WaterMark Embedding Optimization
using Deep Network [23.357707056321534]
We investigate a novel deep learning-based architecture for embedding imperceptible watermarks.
The proposed method is robust against most common distortions on watermarks including collusive distortion.
arXiv Detail & Related papers (2023-05-11T13:21:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.