論文の概要: Data-driven discovery of self-similarity using neural networks
- arxiv url: http://arxiv.org/abs/2406.03896v2
- Date: Thu, 21 Nov 2024 02:17:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-22 15:15:27.476398
- Title: Data-driven discovery of self-similarity using neural networks
- Title(参考訳): データ駆動型ニューラルネットワークによる自己相似性の発見
- Authors: Ryota Watanabe, Takanori Ishii, Yuji Hirono, Hirokazu Maruoka,
- Abstract要約: 本稿では、観測データから直接自己相似性を発見するニューラルネットワークに基づく新しいアプローチを提案する。
物理問題における自己相似解の存在は、支配法則が権力者指数によって主張される関数を含むことを示す。
観測データを用いてニューラルネットワークモデルをトレーニングし、トレーニングが成功すれば、物理問題のスケール・トランスフォーメーション対称性を特徴付けるパワー指数を抽出できる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Finding self-similarity is a key step for understanding the governing law behind complex physical phenomena. Traditional methods for identifying self-similarity often rely on specific models, which can introduce significant bias. In this paper, we present a novel neural network-based approach that discovers self-similarity directly from observed data, without presupposing any models. The presence of self-similar solutions in a physical problem signals that the governing law contains a function whose arguments are given by power-law monomials of physical parameters, which are characterized by power-law exponents. The basic idea is to enforce such particular forms structurally in a neural network in a parametrized way. We train the neural network model using the observed data, and when the training is successful, we can extract the power exponents that characterize scale-transformation symmetries of the physical problem. We demonstrate the effectiveness of our method with both synthetic and experimental data, validating its potential as a robust, model-independent tool for exploring self-similarity in complex systems.
- Abstract(参考訳): 自己相似性を見つけることは、複雑な物理現象の背後にある統治法を理解するための重要なステップである。
従来の自己相似性を特定する方法は、しばしば特定のモデルに依存し、重大なバイアスをもたらす。
本稿では,観測データから直接自己相似性を発見するニューラルネットワークに基づく新しい手法を提案する。
物理問題における自己相似解の存在は、支配法則が、物理パラメータの正則単項項によって引数が与えられる関数を含むことを示す。
基本的な考え方は、そのような特定の形式を、パラメータ化された方法でニューラルネットワークに構造的に強制することである。
観測データを用いてニューラルネットワークモデルをトレーニングし、トレーニングが成功すれば、物理問題のスケール・トランスフォーメーション対称性を特徴付けるパワー指数を抽出できる。
複雑なシステムにおける自己相似性を探索するための頑健でモデルに依存しないツールとしての可能性を検証するため, 合成データと実験データの両方を用いて本手法の有効性を実証した。
関連論文リスト
- InVAErt networks for amortized inference and identifiability analysis of lumped parameter hemodynamic models [0.0]
本研究では、ニューラルネットワークをベースとしたデータ駆動型フレームワークであるinVAErtネットワークを用いて、剛体力学系のディジタル双対解析を強化する。
InVAErtネットワークの柔軟性と有効性について,合成データから欠落成分を含む実データへの6成分ループ型パラメータ血行動態モデルの生理的逆転の文脈で示す。
論文 参考訳(メタデータ) (2024-08-15T17:07:40Z) - Demolition and Reinforcement of Memories in Spin-Glass-like Neural
Networks [0.0]
この論文の目的は、連想記憶モデルと生成モデルの両方において、アンラーニングの有効性を理解することである。
構造化データの選択により、連想記憶モデルは、相当量のアトラクションを持つニューラルダイナミクスのアトラクションとしての概念を検索することができる。
Boltzmann Machinesの新しい正規化手法が提案され、データセットから隠れ確率分布を学習する以前に開発された手法より優れていることが証明された。
論文 参考訳(メタデータ) (2024-03-04T23:12:42Z) - Manipulating Feature Visualizations with Gradient Slingshots [54.31109240020007]
本稿では,モデルの決定過程に大きな影響を及ぼすことなく,特徴可視化(FV)を操作する新しい手法を提案する。
ニューラルネットワークモデルにおける本手法の有効性を評価し,任意の選択したニューロンの機能を隠蔽する能力を示す。
論文 参考訳(メタデータ) (2024-01-11T18:57:17Z) - Extreme sparsification of physics-augmented neural networks for
interpretable model discovery in mechanics [0.0]
本稿では,L0$-regularizationのスムーズなバージョンを用いて,正規化された物理拡張ニューラルネットワークモデルを訓練することを提案する。
本手法は, 可圧縮・非圧縮熱力学, 降伏関数, 弾塑性の硬化モデルに対して, 解釈可能かつ信頼性の高いモデルが得られることを示す。
論文 参考訳(メタデータ) (2023-10-05T16:28:58Z) - On the Trade-off Between Efficiency and Precision of Neural Abstraction [62.046646433536104]
ニューラル抽象化は、最近、複雑な非線形力学モデルの形式近似として導入されている。
我々は形式的帰納的合成法を用いて、これらのセマンティクスを用いた動的モデルをもたらすニューラル抽象化を生成する。
論文 参考訳(メタデータ) (2023-07-28T13:22:32Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Neural Implicit Representations for Physical Parameter Inference from a Single Video [49.766574469284485]
本稿では,外見モデルのためのニューラル暗黙表現と,物理現象をモデル化するためのニューラル常微分方程式(ODE)を組み合わせることを提案する。
提案モデルでは,大規模なトレーニングデータセットを必要とする既存のアプローチとは対照的に,単一のビデオから物理的パラメータを識別することが可能になる。
ニューラル暗示表現を使用することで、高解像度ビデオの処理とフォトリアリスティック画像の合成が可能になる。
論文 参考訳(メタデータ) (2022-04-29T11:55:35Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Modeling Implicit Bias with Fuzzy Cognitive Maps [0.0]
本稿では、構造化データセットにおける暗黙バイアスを定量化するファジィ認知マップモデルを提案する。
本稿では,ニューロンの飽和を防止する正規化様伝達関数を備えた新しい推論機構を提案する。
論文 参考訳(メタデータ) (2021-12-23T17:04:12Z) - Parsimonious neural networks learn interpretable physical laws [77.34726150561087]
本稿では、ニューラルネットワークと進化的最適化を組み合わせたパシモニクスニューラルネットワーク(PNN)を提案し、精度とパシモニクスのバランスをとるモデルを求める。
アプローチのパワーと汎用性は、古典力学のモデルを開発し、基本特性から材料の融解温度を予測することによって実証される。
論文 参考訳(メタデータ) (2020-05-08T16:15:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。