論文の概要: A Road-Map for Transferring Software Engineering methods for Model-Based Early V&V of Behaviour to Systems Engineering
- arxiv url: http://arxiv.org/abs/2406.04037v1
- Date: Thu, 6 Jun 2024 13:04:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 14:59:54.618888
- Title: A Road-Map for Transferring Software Engineering methods for Model-Based Early V&V of Behaviour to Systems Engineering
- Title(参考訳): ビヘイビアのモデルベース初期V&Vのためのソフトウェア工学手法をシステム工学へ移行するためのロードマップ
- Authors: Johan Cederbladh, Antonio Cicchetti,
- Abstract要約: モデルベースシステムエンジニアリングの初期において,システム動作の検証と検証(V&V'ed)の必要性が高まっていることについて論じる。
本稿では、初期のV&Vに関する文献の概要と、潜在的な解決策に関する既存の課題について述べる。
- 参考スコア(独自算出の注目度): 0.8594140167290099
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper we discuss the growing need for system behaviour to be validated and verified (V&V'ed) early in model-based systems engineering. Several aspects push companies towards integration of techniques, methods, and processes that promote specific and general V&V activities earlier to support more effective decision-making. As a result, there are incentives to introduce new technologies to remain competitive with the recently drastic changes in system complexity and heterogeneity. Performing V&V early on in development is a means of reducing risk for later error detection while moving key activities earlier in a process. We present a summary of the literature on early V&V and position existing challenges regarding potential solutions and future investigations. In particular, we reason that the software engineering community can act as a source for inspiration as many emerging technologies in the software domain are showing promise in the wider systems domain, and there already exist well formed methods for early V&V of software behaviour in the software modelling community. We conclude the paper with a road-map for future research and development for both researchers and practitioners to further develop the concepts discussed in the paper.
- Abstract(参考訳): 本稿では,モデルベースシステムエンジニアリングの初期において,システム動作の検証と検証(V&V'ed)の必要性が高まっていることについて論じる。
いくつかの側面は企業に対して、より効果的な意思決定を支援するために、より早く特定の、一般的なV&V活動を促進する技術、方法、プロセスの統合を促す。
その結果、システム複雑性と不均一性の最近の急激な変化と競合し続けるために、新しい技術を導入するインセンティブがある。
開発の初期段階でV&Vを実行することは、プロセスの早い段階で重要なアクティビティを移動させながら、後のエラー検出のリスクを低減する手段である。
本稿では、初期のV&Vに関する文献の概要と、潜在的な解決策や今後の調査に関する既存の課題について述べる。
特に、ソフトウェア工学のコミュニティは、ソフトウェア領域の多くの新興技術がより広いシステム領域で約束しているように、インスピレーションの源として振る舞うことができる。
本論文は、研究者と実践者の両方が議論する概念をさらに発展させるために、今後の研究・開発のためのロードマップで締めくくっている。
関連論文リスト
- Search, Verify and Feedback: Towards Next Generation Post-training Paradigm of Foundation Models via Verifier Engineering [51.31836988300326]
検証工学は、基礎モデルの時代のために特別に設計された新しいポストトレーニングパラダイムである。
検証工学のプロセスは,検索,検証,フィードバックの3段階に分類する。
論文 参考訳(メタデータ) (2024-11-18T12:04:52Z) - Abstraction Engineering [6.091612632147657]
抽象化はすでに、ソフトウェア開発に関わる多くの分野で使われています。
本稿では、これらの新しい課題を考察し、抽象のレンズを通してそれらに取り組むことを提案する。
抽象化エンジニアリングの基礎について議論し、主要な課題を特定し、これらの課題に対処するための研究課題を強調し、将来の研究のロードマップを作成します。
論文 参考訳(メタデータ) (2024-08-26T07:56:32Z) - Contemporary Software Modernization: Perspectives and Challenges to Deal with Legacy Systems [48.33168695898682]
2000年代初頭に研究テーマとして「ソフトウェア近代化」が登場した。
文学では膨大な量の著作があるにもかかわらず、かなりの限界がある。
論文 参考訳(メタデータ) (2024-07-04T15:49:52Z) - Networking Systems for Video Anomaly Detection: A Tutorial and Survey [55.28514053969056]
ビデオ異常検出(VAD)は人工知能(AI)コミュニティにおける基本的な研究課題である。
本稿では,各種深層学習駆動型VAD経路の基本前提,学習フレームワーク,適用シナリオについて述べる。
我々は、産業用IoTおよびスマート都市における最新のNSVAD研究と、デプロイ可能なNSVADのためのエンドクラウド共同アーキテクチャを紹介します。
論文 参考訳(メタデータ) (2024-05-16T02:00:44Z) - Bridging Gaps, Building Futures: Advancing Software Developer Diversity and Inclusion Through Future-Oriented Research [50.545824691484796]
我々はSEの多様性と包摂性に関する課題と解決策について、SE研究者や実践者から知見を提示する。
我々は,将来的なユートピアやディストピアのビジョンを共有し,今後の研究の方向性とアカデミックや産業への示唆を提供する。
論文 参考訳(メタデータ) (2024-04-10T16:18:11Z) - Bringing order into the realm of Transformer-based language models for
artificial intelligence and law [3.2074558838636262]
トランスフォーマーベース言語モデル(TLM)は最先端技術として広く認識されている。
本稿は、法的領域におけるAI駆動問題とタスクに対するTLMベースの手法に関する最初の体系的な概要を提供する。
論文 参考訳(メタデータ) (2023-08-10T11:14:22Z) - Machine Learning Model Development from a Software Engineering
Perspective: A Systematic Literature Review [0.0]
データサイエンティストは、しばしば、業界やアカデミーの様々な問題を解決するために機械学習モデルを開発した。
本稿では,ソフトウェア工学の観点からMLモデルの開発において生じる課題と実践について考察する。
論文 参考訳(メタデータ) (2021-02-15T14:25:13Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
機械学習システムの開発とデプロイは、現代のツールで簡単に実行できますが、プロセスは一般的に急ぎ、エンドツーエンドです。
私たちは、機械学習の開発と展開のための実証済みのシステムエンジニアリングアプローチを開発しました。
当社の「機械学習技術準備レベル」フレームワークは、堅牢で信頼性が高く、責任あるシステムを確保するための原則的なプロセスを定義します。
論文 参考訳(メタデータ) (2021-01-11T15:54:48Z) - Constraint Programming Algorithms for Route Planning Exploiting
Geometrical Information [91.3755431537592]
本稿では,経路計画問題に対する新しいアルゴリズムの開発に関する現在の研究動向について概説する。
これまでの研究は、特にユークリッド旅行セールスパーソン問題(ユークリッドTSP)に焦点を当ててきた。
目的は、将来ユークリッド自動車問題(ユークリッドVRP)など、同じカテゴリーの他の問題にも得られる結果を活用することである。
論文 参考訳(メタデータ) (2020-09-22T00:51:45Z) - Engineering AI Systems: A Research Agenda [9.84673609667263]
私たちは、企業が機械学習を採用する際に経験する典型的な進化パターンの概念化を提供します。
論文の主なコントリビューションは、MLソリューションを取り巻く重要なエンジニアリング課題の概要を提供する、AIエンジニアリングに関する研究アジェンダである。
論文 参考訳(メタデータ) (2020-01-16T20:29:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。