論文の概要: Search, Verify and Feedback: Towards Next Generation Post-training Paradigm of Foundation Models via Verifier Engineering
- arxiv url: http://arxiv.org/abs/2411.11504v1
- Date: Mon, 18 Nov 2024 12:04:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:36:22.722812
- Title: Search, Verify and Feedback: Towards Next Generation Post-training Paradigm of Foundation Models via Verifier Engineering
- Title(参考訳): 検索,検証,フィードバック:検証工学による基礎モデルの次世代学習パラダイムを目指して
- Authors: Xinyan Guan, Yanjiang Liu, Xinyu Lu, Boxi Cao, Ben He, Xianpei Han, Le Sun, Jie Lou, Bowen Yu, Yaojie Lu, Hongyu Lin,
- Abstract要約: 検証工学は、基礎モデルの時代のために特別に設計された新しいポストトレーニングパラダイムである。
検証工学のプロセスは,検索,検証,フィードバックの3段階に分類する。
- 参考スコア(独自算出の注目度): 51.31836988300326
- License:
- Abstract: The evolution of machine learning has increasingly prioritized the development of powerful models and more scalable supervision signals. However, the emergence of foundation models presents significant challenges in providing effective supervision signals necessary for further enhancing their capabilities. Consequently, there is an urgent need to explore novel supervision signals and technical approaches. In this paper, we propose verifier engineering, a novel post-training paradigm specifically designed for the era of foundation models. The core of verifier engineering involves leveraging a suite of automated verifiers to perform verification tasks and deliver meaningful feedback to foundation models. We systematically categorize the verifier engineering process into three essential stages: search, verify, and feedback, and provide a comprehensive review of state-of-the-art research developments within each stage. We believe that verifier engineering constitutes a fundamental pathway toward achieving Artificial General Intelligence.
- Abstract(参考訳): 機械学習の進化は、強力なモデルとよりスケーラブルな監視信号の開発をますます優先している。
しかし, 基礎モデルの出現は, さらなる能力向上に必要な効果的な監視信号の提供において, 重大な課題を呈している。
そのため、新たな監視信号や技術的アプローチの探索が急務である。
本稿では,基礎モデルの時代に特化して設計された新しいポストトレーニングパラダイムである検証器工学を提案する。
検証工学のコアは、検証タスクを実行し、基礎モデルに有意義なフィードバックを提供するために、自動検証ツールのスイートを活用することである。
検証工学のプロセスは,検索,検証,フィードバックの3段階に分類し,各段階における最先端研究の総合的なレビューを行う。
我々は,検証工学が人工知能の実現に向けた基本的な道の1つだと信じている。
関連論文リスト
- AI Foundation Models in Remote Sensing: A Survey [6.036426846159163]
本稿では,リモートセンシング領域における基礎モデルの包括的調査を行う。
コンピュータビジョンおよびドメイン固有タスクにおけるそれらの応用に基づいて、これらのモデルを分類する。
これらの基盤モデルによって達成された、新しいトレンドと大きな進歩を強調します。
論文 参考訳(メタデータ) (2024-08-06T22:39:34Z) - Forging Vision Foundation Models for Autonomous Driving: Challenges,
Methodologies, and Opportunities [59.02391344178202]
ビジョンファウンデーションモデル(VFM)は、幅広いAIアプリケーションのための強力なビルディングブロックとして機能する。
総合的なトレーニングデータの不足、マルチセンサー統合の必要性、多様なタスク固有のアーキテクチャは、VFMの開発に重大な障害をもたらす。
本稿では、自動運転に特化したVFMを鍛造する上で重要な課題について述べるとともに、今後の方向性を概説する。
論文 参考訳(メタデータ) (2024-01-16T01:57:24Z) - Unleashing the potential of prompt engineering in Large Language Models: a comprehensive review [1.6006550105523192]
大規模言語モデル(LLM)の能力を解き放つ上で,迅速なエンジニアリングが果たす重要な役割を概観する
自己整合性、思考の連鎖、そして生成された知識などの技術を含む、素早い工学の基礎的方法論と先進的な方法論の両方を検査する。
レビューはまた、AI能力の進歩におけるエンジニアリングの急進的な役割を反映し、将来の研究と応用のための構造化されたフレームワークを提供する。
論文 参考訳(メタデータ) (2023-10-23T09:15:18Z) - PASTA: Pretrained Action-State Transformer Agents [10.654719072766495]
自己教師型学習は、様々なコンピューティング領域において革命的なパラダイムシフトをもたらした。
最近のアプローチでは、大量のラベルのないデータに基づいて、トランスフォーマーモデルを事前訓練する。
強化学習において、研究者は最近これらのアプローチに適応し、専門家の軌道で事前訓練されたモデルを開発した。
論文 参考訳(メタデータ) (2023-07-20T15:09:06Z) - Review of Large Vision Models and Visual Prompt Engineering [50.63394642549947]
レビューは、大きな視覚モデルと視覚プロンプトエンジニアリングのためにコンピュータビジョン領域で使用される手法を要約することを目的としている。
本稿では、視覚領域における影響力のある大規模モデルと、これらのモデルに使用される一連のプロンプトエンジニアリング手法を提案する。
論文 参考訳(メタデータ) (2023-07-03T08:48:49Z) - Geometric Deep Learning for Structure-Based Drug Design: A Survey [83.87489798671155]
構造に基づく薬物設計(SBDD)は、タンパク質の3次元幾何学を利用して、潜在的な薬物候補を特定する。
近年の幾何学的深層学習の進歩は、3次元幾何学的データを効果的に統合・処理し、この分野を前進させてきた。
論文 参考訳(メタデータ) (2023-06-20T14:21:58Z) - Challenges and Practices of Deep Learning Model Reengineering: A Case
Study on Computer Vision [3.510650664260664]
多くのエンジニアリング組織が、研究コミュニティからディープニューラルネットワークを再実装し、拡張しています。
ディープラーニングモデルの再設計は、ドキュメント不足の参照モデル、要件の変更、実装とテストのコストといった理由から難しい。
本研究は「プロセス」の観点からのリエンジニアリング活動に重点を置いており、リエンジニアリングプロセスに特に携わるエンジニアに焦点を当てている。
論文 参考訳(メタデータ) (2023-03-13T21:23:43Z) - Intrinsic Motivation in Model-based Reinforcement Learning: A Brief
Review [77.34726150561087]
本稿では,エージェントが獲得した世界モデルに基づいて,本質的な動機付けを決定するための既存の手法について考察する。
提案した統合フレームワークは,学習を改善するために,世界モデルと本質的なモチベーションを用いてエージェントのアーキテクチャを記述する。
論文 参考訳(メタデータ) (2023-01-24T15:13:02Z) - Data-Driven and SE-assisted AI Model Signal-Awareness Enhancement and
Introspection [61.571331422347875]
モデルの信号認識性を高めるためのデータ駆動型手法を提案する。
コード複雑性のSE概念とカリキュラム学習のAIテクニックを組み合わせる。
モデル信号認識における最大4.8倍の改善を実現している。
論文 参考訳(メタデータ) (2021-11-10T17:58:18Z) - Roadmap on Signal Processing for Next Generation Measurement Systems [0.222020259427608]
人工知能と機械学習の最近の進歩は、研究の注目をインテリジェントでデータ駆動の信号処理へとシフトさせている。
このロードマップは、次世代計測システムに向けた今後の課題と研究の機会を強調するために、最先端の手法と応用について批判的な概要を提示する。
基礎研究から工業研究まで幅広い分野をカバーし、研究分野ごとの現在と将来の発展の傾向と影響を反映した簡潔なテーマのセクションで組織されている。
論文 参考訳(メタデータ) (2021-11-03T19:39:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。