論文の概要: Constraint Programming Algorithms for Route Planning Exploiting
Geometrical Information
- arxiv url: http://arxiv.org/abs/2009.10253v1
- Date: Tue, 22 Sep 2020 00:51:45 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-15 22:33:53.784522
- Title: Constraint Programming Algorithms for Route Planning Exploiting
Geometrical Information
- Title(参考訳): 幾何学的情報を展開する経路計画のための制約プログラミングアルゴリズム
- Authors: Alessandro Bertagnon (University of Ferrara)
- Abstract要約: 本稿では,経路計画問題に対する新しいアルゴリズムの開発に関する現在の研究動向について概説する。
これまでの研究は、特にユークリッド旅行セールスパーソン問題(ユークリッドTSP)に焦点を当ててきた。
目的は、将来ユークリッド自動車問題(ユークリッドVRP)など、同じカテゴリーの他の問題にも得られる結果を活用することである。
- 参考スコア(独自算出の注目度): 91.3755431537592
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Problems affecting the transport of people or goods are plentiful in industry
and commerce and they also appear to be at the origin of much more complex
problems. In recent years, the logistics and transport sector keeps growing
supported by technological progress, i.e. companies to be competitive are
resorting to innovative technologies aimed at efficiency and effectiveness.
This is why companies are increasingly using technologies such as Artificial
Intelligence (AI), Blockchain and Internet of Things (IoT). Artificial
intelligence, in particular, is often used to solve optimization problems in
order to provide users with the most efficient ways to exploit available
resources. In this work we present an overview of our current research
activities concerning the development of new algorithms, based on CLP
techniques, for route planning problems exploiting the geometric information
intrinsically present in many of them or in some of their variants. The
research so far has focused in particular on the Euclidean Traveling
Salesperson Problem (Euclidean TSP) with the aim to exploit the results
obtained also to other problems of the same category, such as the Euclidean
Vehicle Routing Problem (Euclidean VRP), in the future.
- Abstract(参考訳): 人や商品の輸送に影響を及ぼす問題は、産業や商業において豊富であり、さらに複雑な問題の原因となっている。
近年、物流・輸送分野は技術進歩に支えられつつあり、競争力のある企業は効率と効率性を目的とした革新的な技術に頼っている。
企業が人工知能(AI)やブロックチェーン、IoT(Internet of Things)といったテクノロジをますます活用している理由がここにあります。
特に人工知能は、利用可能なリソースを利用する最も効率的な方法を提供するために、最適化問題を解決するためにしばしば使用される。
本稿では,CLP技術に基づく新しいアルゴリズム開発に関する現在の研究動向について概説し,その多くが本質的に存在する幾何学的情報を利用した経路計画問題について概説する。
これまでの研究は、euclidean travel salesperson problem (euclidean tsp) に焦点をあてており、将来のeuclidean vehicle routing problem (euclidean vrp) など、同様のカテゴリの他の問題にもその成果を活用している。
関連論文リスト
- Blockchain-based AI Methods for Managing Industrial IoT: Recent Developments, Integration Challenges and Opportunities [3.3030080038744947]
著者は、スマートIIoTにおいて、BCによるAIアプローチに関する包括的な調査を提示する。
AI、BC、スマートIoTアプリケーションに関する最先端の概要に注目します。
セキュリティ、安定性、スケーラビリティ、機密性など、さまざまな問題を強調します。
論文 参考訳(メタデータ) (2024-05-21T07:34:49Z) - Introduction to Algogens [0.0]
Algogensは、ジェネレーティブAIと従来のアルゴリズムの統合を約束する。
本書では、アルゴゲンの基礎、その開発、応用、および利点について論じている。
アルゴゲンが直面している展望と障害物をバランスよく見ることができます。
論文 参考訳(メタデータ) (2024-03-03T07:52:10Z) - A Survey of Generative AI for Intelligent Transportation Systems: Road Transportation Perspective [7.770651543578893]
我々は、異なる生成AI技術の原則を紹介する。
我々は,ITSにおけるタスクを,交通認識,交通予測,交通シミュレーション,交通意思決定の4つのタイプに分類する。
これらの4種類のタスクにおいて、生成的AI技術が重要な問題にどのように対処するかを説明する。
論文 参考訳(メタデータ) (2023-12-13T16:13:23Z) - The Efficiency Spectrum of Large Language Models: An Algorithmic Survey [54.19942426544731]
LLM(Large Language Models)の急速な成長は、様々なドメインを変換する原動力となっている。
本稿では,LLMのエンドツーエンドのアルゴリズム開発に不可欠な多面的効率性について検討する。
論文 参考訳(メタデータ) (2023-12-01T16:00:25Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
IT運用のための人工知能(AIOps)は、AIのパワーとIT運用プロセスが生成するビッグデータを組み合わせることを目的としている。
我々は、IT運用活動が発信する重要なデータの種類、分析における規模と課題、そしてどのように役立つかについて深く議論する。
主要なAIOpsタスクは、インシデント検出、障害予測、根本原因分析、自動アクションに分類します。
論文 参考訳(メタデータ) (2023-04-10T15:38:12Z) - Selected Trends in Artificial Intelligence for Space Applications [69.3474006357492]
この章は、差別化可能なインテリジェンスとオンボード機械学習に焦点を当てている。
欧州宇宙機関(ESA)Advanced Concepts Team(ACT)から選ばれたいくつかのプロジェクトについて論じる。
論文 参考訳(メタデータ) (2022-12-10T07:49:50Z) - Physical Computing for Materials Acceleration Platforms [81.09376948478891]
我々は、MAPs研究プログラムの一環として、新しい素材の探索を加速する同じシミュレーションとAIツールが、根本的に新しいコンピュータ媒体の設計を可能にすると論じている。
シミュレーションに基づくMAPプログラムの概要を述べる。
我々は、材料研究者と計算機科学者の革新的なコラボレーションの新たな時代を導入することを期待している。
論文 参考訳(メタデータ) (2022-08-17T23:03:54Z) - Big Data Analytics Applying the Fusion Approach of Multicriteria
Decision Making with Deep Learning Algorithms [0.0]
複数基準に基づく意思決定は、ビッグデータ分析における代替効果に関連する様々な問題に対して解決すべき重要な問題の1つである。
意思決定のようなアルゴリズムや、マルチ基準に基づくディープラーニングメカニズムを含む、最新の機械学習技術に基づくソリューションを見つける傾向があります。
本質的には、ビジネス、農業、情報技術、コンピュータ科学を含むいくつかの分野は、深層学習と多基準に基づく意思決定問題を使用する。
論文 参考訳(メタデータ) (2021-02-02T05:56:03Z) - Artificial Intelligence for IT Operations (AIOPS) Workshop White Paper [50.25428141435537]
AIOps(Artificial Intelligence for IT Operations)は、マシンラーニング、ビッグデータ、ストリーミング分析、IT運用管理の交差点で発生する、新たな学際分野である。
AIOPSワークショップの主な目的は、アカデミアと産業界の両方の研究者が集まり、この分野での経験、成果、作業について発表することです。
論文 参考訳(メタデータ) (2021-01-15T10:43:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。