論文の概要: Fast Redescription Mining Using Locality-Sensitive Hashing
- arxiv url: http://arxiv.org/abs/2406.04148v1
- Date: Thu, 6 Jun 2024 15:13:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 14:20:13.585981
- Title: Fast Redescription Mining Using Locality-Sensitive Hashing
- Title(参考訳): 局所感性ハッシュを用いた高速再記述マイニング
- Authors: Maiju Karjalainen, Esther Galbrun, Pauli Miettinen,
- Abstract要約: 本稿では,既存の手法よりも高速にマッチングおよび拡張順序を実行するアルゴリズムを提案する。
我々のアルゴリズムは局所性に敏感なハッシュに基づいており、数値属性の離散化を扱うための調整されたアプローチである。
- 参考スコア(独自算出の注目度): 1.126524823245055
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Redescription mining is a data analysis technique that has found applications in diverse fields. The most used redescription mining approaches involve two phases: finding matching pairs among data attributes and extending the pairs. This process is relatively efficient when the number of attributes remains limited and when the attributes are Boolean, but becomes almost intractable when the data consist of many numerical attributes. In this paper, we present new algorithms that perform the matching and extension orders of magnitude faster than the existing approaches. Our algorithms are based on locality-sensitive hashing with a tailored approach to handle the discretisation of numerical attributes as used in redescription mining.
- Abstract(参考訳): リセプションマイニング(英: Redescription mining)は、さまざまな分野の応用を見出したデータ分析技術である。
最もよく使われている再記述マイニング手法には、データ属性間のマッチングペアを見つけ、ペアを拡張するという2つのフェーズがある。
このプロセスは、属性の数が制限されたままであり、属性がBooleanである場合には比較的効率的であるが、多くの数値属性で構成されるとほとんど難解になる。
本稿では,既存の手法よりも高速にマッチングおよび拡張順序を実行するアルゴリズムを提案する。
提案アルゴリズムは局所性に敏感なハッシュに基づいており, 数値属性の離散化を再現マイニングに用いた。
関連論文リスト
- Attributes Grouping and Mining Hashing for Fine-Grained Image Retrieval [24.8065557159198]
微粒な画像検索のための属性グループとマイニングハッシュ(AGMH)を提案する。
AGMHはカテゴリ固有の視覚属性を複数の記述子にグループ化し、包括的特徴表現を生成する。
AGMHは、きめ細かいベンチマークデータセットの最先端メソッドに対して、一貫して最高のパフォーマンスを得る。
論文 参考訳(メタデータ) (2023-11-10T14:01:56Z) - ParlayANN: Scalable and Deterministic Parallel Graph-Based Approximate
Nearest Neighbor Search Algorithms [5.478671305092084]
本稿では,ParlayANNについて紹介する。ParlayANNは決定論的および並列グラフに基づく近接探索アルゴリズムのライブラリである。
我々は、数十億のデータセットにスケールする4つの最先端グラフベースのANNSアルゴリズムに対して、新しい並列実装を開発する。
論文 参考訳(メタデータ) (2023-05-07T19:28:23Z) - Unified Functional Hashing in Automatic Machine Learning [58.77232199682271]
高速に統一された関数型ハッシュを用いることで,大きな効率向上が得られることを示す。
私たちのハッシュは"機能的"であり、表現やコードが異なる場合でも同等の候補を識別します。
ニューラルアーキテクチャ検索やアルゴリズム発見など、複数のAutoMLドメインで劇的な改善がなされている。
論文 参考訳(メタデータ) (2023-02-10T18:50:37Z) - Representation Learning for Efficient and Effective Similarity Search
and Recommendation [6.280255585012339]
この論文は、より表現力のある表現とより効果的な類似度尺度を通じてハッシュコードの有効性を向上させる表現学習に貢献する。
コントリビューションは、類似性検索とレコメンデーションに関連するいくつかのタスクで実証的に検証される。
論文 参考訳(メタデータ) (2021-09-04T08:19:01Z) - Estimating leverage scores via rank revealing methods and randomization [50.591267188664666]
任意のランクの正方形密度あるいはスパース行列の統計レバレッジスコアを推定するアルゴリズムについて検討した。
提案手法は,高密度およびスパースなランダム化次元性還元変換の合成と階調明細化法を組み合わせることに基づく。
論文 参考訳(メタデータ) (2021-05-23T19:21:55Z) - Accelerating Text Mining Using Domain-Specific Stop Word Lists [57.76576681191192]
本稿では,超平面的アプローチと呼ばれるドメイン固有語の自動抽出手法を提案する。
ハイパープレーンベースのアプローチは、無関係な特徴を排除することによって、テキストの寸法を著しく削減することができる。
その結果,超平面型アプローチはコーパスの寸法を90%削減し,相互情報より優れることがわかった。
論文 参考訳(メタデータ) (2020-11-18T17:42:32Z) - A Systematic Characterization of Sampling Algorithms for Open-ended
Language Generation [71.31905141672529]
本稿では,自己回帰型言語モデルに広く採用されている祖先サンプリングアルゴリズムについて検討する。
エントロピー低減, 秩序保存, 斜面保全の3つの重要な特性を同定した。
これらの特性を満たすサンプリングアルゴリズムのセットが,既存のサンプリングアルゴリズムと同等に動作することがわかった。
論文 参考訳(メタデータ) (2020-09-15T17:28:42Z) - Reinforcing Short-Length Hashing [61.75883795807109]
既存の手法は、非常に短いハッシュコードを用いた検索性能が劣っている。
本研究では, 短寿命ハッシュ(RSLH)を改良する新しい手法を提案する。
本稿では,ハッシュ表現とセマンティックラベルの相互再構成を行い,セマンティック情報を保存する。
3つの大規模画像ベンチマークの実験は、様々な短いハッシュシナリオ下でのRSLHの優れた性能を示す。
論文 参考訳(メタデータ) (2020-04-24T02:23:52Z) - New advances in enumerative biclustering algorithms with online
partitioning [80.22629846165306]
さらに、数値データセットの列に定数値を持つ最大二クラスタの効率的で完全で正しい非冗長列挙を実現できる二クラスタリングアルゴリズムであるRIn-Close_CVCを拡張した。
改良されたアルゴリズムはRIn-Close_CVC3と呼ばれ、RIn-Close_CVCの魅力的な特性を保ちます。
論文 参考訳(メタデータ) (2020-03-07T14:54:26Z) - A Novel Incremental Cross-Modal Hashing Approach [21.99741793652628]
我々は「iCMH」と呼ばれる新しい漸進的クロスモーダルハッシュアルゴリズムを提案する。
提案手法は,ハッシュコードを学習し,ハッシュ関数を訓練する2つの段階からなる。
さまざまなクロスモーダルデータセットの実験と最先端のクロスモーダルアルゴリズムとの比較は、我々のアプローチの有用性を示している。
論文 参考訳(メタデータ) (2020-02-03T12:34:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。