論文の概要: Circuit-level fault tolerance of cat codes
- arxiv url: http://arxiv.org/abs/2406.04157v1
- Date: Thu, 6 Jun 2024 15:18:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 14:20:13.559730
- Title: Circuit-level fault tolerance of cat codes
- Title(参考訳): 猫符号の回路レベルの耐故障性
- Authors: Long D. H. My, Shushen Qin, Hui Khoon Ng,
- Abstract要約: ボソニック符号は、量子情報を単一の無限次元物理系に格納することを可能にする。
ボソニックコードにおける現在の取り組みの多くは、損失エラーのみを修正することにある。
猫符号を符号化した情報保存のための誤り訂正回路の性能を評価する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bosonic codes offer the possibility of storing quantum information in a single infinite-dimensional physical system endowed with the capability to correct errors, thereby reducing the number of physical components needed to protect against noise. Much of the current efforts in bosonic codes are on correcting only loss errors, while deferring the correction of phase errors -- perhaps actively suppressed -- to subsequent layers of encoding with standard qubit codes. Rotationally symmetric bosonic codes, which include the well-known cat and binomial codes, are capable of simultaneous correction of both loss and phase errors, offer an alternate route that deals with arbitrary errors already at the base layer. Grimsmo et al. [PRX 10, 011058 (2020)] analyzed the family of such codes and proposed general error-correction circuits to correct both loss and phase errors, reporting high noise thresholds in the presence of loss and phase errors on the input, while the error-correction circuits remain noiseless. A proper assessment, however, requires consideration of circuit-level noise, where the individual circuit components can themselves be faulty and introduce errors on the encoded information. Here, we carry out such a circuit-level analysis, and assess the performance of the error-correction circuits for the storage of information encoded with cat codes. While the circuits of Grimsmo et al.~are formally fault tolerant even under circuit-level noise, the thresholds are significantly worse. We show how, through waiting-time optimization and the use of squeezing, we can restore the noise requirements to ones plausibly achievable with near-term quantum hardware. Our circuit-level analysis also reveals important features of the error-correction circuits not visible in the earlier ideal-circuit perspective.
- Abstract(参考訳): ボソニック符号は、誤りを訂正する能力を持つ単一の無限次元物理系に量子情報を格納する可能性を提供し、ノイズから保護するために必要な物理成分の数を減少させる。
ボソニックコードにおける現在の取り組みの多くは、損失エラーのみを訂正することであり、フェーズエラー(おそらく積極的に抑制されている)の修正を、標準量子ビットコードによるその後の符号化層に延期することである。
よく知られた猫と二項符号を含む回転対称なボソニック符号は、損失と位相誤差の両方を同時に補正することができ、ベース層で既に任意のエラーを扱う代替経路を提供する。
Grimsmo et al [PRX 10, 011058 (2020)] はこれらの符号の族を解析し、損失と位相誤差の両方を補正する一般的な誤り訂正回路を提案し、誤り訂正回路はノイズのないままである。
しかし、適切な評価では、個々の回路コンポーネント自体が故障し、符号化された情報にエラーを発生させる回路レベルのノイズを考慮する必要がある。
そこで我々は,このような回路レベルの解析を行い,猫コードで符号化された情報の記憶のための誤り訂正回路の性能を評価する。
Grimsmo et al ~の回路は、回路レベルのノイズの下でも正式には耐障害性を持つが、しきい値はかなり悪い。
我々は、待ち時間最適化とスクイーズの使用により、ノイズ要求を短期量子ハードウェアで達成可能なものに復元する方法を示す。
また,回路レベルの解析により,従来の理想回路の視点では見えない誤差補正回路の重要な特徴が明らかになった。
関連論文リスト
- Degenerate quantum erasure decoding [7.6119527195998025]
明示的なコードと効率的なデコーダを用いて、ニアキャパシティ性能を実現する方法を示す。
さらに、混合消去や非分極エラーなど、他のエラーモデルを扱うデコーダの可能性についても検討する。
論文 参考訳(メタデータ) (2024-11-20T18:02:05Z) - Enhancing Quantum Memory Lifetime with Measurement-Free Local Error Correction and Reinforcement Learning [1.0446041735532203]
本稿では,$textitlocal$エラー情報に基づく,計測不要な回路レベルのエラー訂正プロトコルについて検討する。
これらの回路は,2次元トーリック符号メモリを保存するために,中間回路の読み出し速度を低減できることを示す。
論文 参考訳(メタデータ) (2024-08-18T16:18:21Z) - Fault-tolerant quantum computation using large spin cat-codes [0.8640652806228457]
本研究では、スピンキャット符号を用いて、大きなスピンキュウトに符号化された量子ビットに基づいて、フォールトトレラントな量子誤り訂正プロトコルを構築する。
我々は、量子制御とライダーベルク封鎖を用いて、ランク保存されたCNOTゲートを含む普遍ゲートセットを生成する方法を示す。
これらの知見は、量子情報処理において、耐障害性、高いしきい値、リソースオーバーヘッドを低減できる可能性を持つ、大きなスピンで量子ビットを符号化する方法を舗装している。
論文 参考訳(メタデータ) (2024-01-08T22:56:05Z) - Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
我々は、支配的なノイズを既知の場所での消去に効率よく変換することで、消去量子ビットの考え方を利用する。
消去量子ビットと最近導入されたFloquet符号に基づくQECスキームの提案と最適化を行う。
以上の結果から, 消去量子ビットに基づくQECスキームは, より複雑であるにもかかわらず, 標準手法よりも著しく優れていることが示された。
論文 参考訳(メタデータ) (2023-12-21T17:40:18Z) - Testing the Accuracy of Surface Code Decoders [55.616364225463066]
大規模でフォールトトレラントな量子計算は量子エラー訂正符号(QECC)によって実現される
本研究は,QECC復号方式の精度と有効性をテストするための最初の体系的手法である。
論文 参考訳(メタデータ) (2023-11-21T10:22:08Z) - Deep Quantum Error Correction [73.54643419792453]
量子誤り訂正符号(QECC)は、量子コンピューティングのポテンシャルを実現するための鍵となる要素である。
本研究では,新しいエンペンド・ツー・エンドの量子誤りデコーダを効率的に訓練する。
提案手法は,最先端の精度を実現することにより,QECCのニューラルデコーダのパワーを実証する。
論文 参考訳(メタデータ) (2023-01-27T08:16:26Z) - Construction of Bias-preserving Operations for Pair-cat Code [17.34207569961146]
マルチレベルシステムは、バイアス保存量子演算の望ましいセットを達成することができる。
猫符号は、励起損失誤差に対する連続量子誤差補正とは互換性がない。
バイアス保存処理をペアカット符号に一般化し、ボゾン損失とデフォーカスエラーの両方に対して連続量子誤り補正に適合させる。
論文 参考訳(メタデータ) (2022-08-14T20:45:26Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
テレポーテーションに基づく誤り訂正回路を用いて、回転対称符号の誤り訂正能力を解析する。
マイクロ波光学における現在達成可能な測定効率により, ボソニック回転符号の破壊ポテンシャルは著しく低下することが判明した。
論文 参考訳(メタデータ) (2021-08-02T16:12:13Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
耐故障性ウェイト4パリティチェック測定方式を実験的に実証した。
フラグ条件パリティ測定の単発忠実度は93.2(2)%である。
このスキームは、安定化器量子誤り訂正プロトコルの幅広いクラスにおいて必須な構成要素である。
論文 参考訳(メタデータ) (2021-07-13T20:08:04Z) - Hardware-Encoding Grid States in a Non-Reciprocal Superconducting
Circuit [62.997667081978825]
本稿では、非相互デバイスと、基底空間が2倍縮退し、基底状態がGottesman-Kitaev-Preskill(GKP)符号の近似符号であるジョセフソン接合からなる回路設計について述べる。
この回路は、電荷やフラックスノイズなどの超伝導回路の一般的なノイズチャネルに対して自然に保護されており、受動的量子誤差補正に使用できることを示唆している。
論文 参考訳(メタデータ) (2020-02-18T16:45:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。