論文の概要: Quixer: A Quantum Transformer Model
- arxiv url: http://arxiv.org/abs/2406.04305v1
- Date: Thu, 6 Jun 2024 17:52:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 13:30:41.734505
- Title: Quixer: A Quantum Transformer Model
- Title(参考訳): Quixer:量子トランスモデル
- Authors: Nikhil Khatri, Gabriel Matos, Luuk Coopmans, Stephen Clark,
- Abstract要約: 量子トランスモデルQuixerについて紹介する。
Quixerはトークンの重ね合わせを作成し、この混合にトレーニング可能な非線形変換を適用することで機能する。
パラメータ化された成分を固定構造に置換して量子変換器の新たなクラスを生成できることが示される。
- 参考スコア(独自算出の注目度): 3.140679149492808
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Progress in the realisation of reliable large-scale quantum computers has motivated research into the design of quantum machine learning models. We present Quixer: a novel quantum transformer model which utilises the Linear Combination of Unitaries and Quantum Singular Value Transform primitives as building blocks. Quixer operates by preparing a superposition of tokens and applying a trainable non-linear transformation to this mix. We present the first results for a quantum transformer model applied to a practical language modelling task, obtaining results competitive with an equivalent classical baseline. In addition, we include resource estimates for evaluating the model on quantum hardware, and provide an open-source implementation for classical simulation. We conclude by highlighting the generality of Quixer, showing that its parameterised components can be substituted with fixed structures to yield new classes of quantum transformers.
- Abstract(参考訳): 信頼性の高い大規模量子コンピュータの実現の進展は、量子機械学習モデルの設計を動機付けてきた。
本稿では、単位と量子特異値変換プリミティブの線形結合をビルディングブロックとして利用した新しい量子トランスモデルQuixerを提案する。
Quixerはトークンの重ね合わせを作成し、この混合にトレーニング可能な非線形変換を適用することで機能する。
実用的な言語モデリングタスクに適用した量子トランスモデルの最初の結果を示し、等価な古典的ベースラインと競合する結果を得る。
また、量子ハードウェア上でのモデル評価のためのリソース推定や、古典シミュレーションのためのオープンソース実装も含んでいる。
我々は、Quixerの一般性を強調し、そのパラメータ化された成分が固定構造に代えて新しい量子トランスフォーマーのクラスが得られることを示した。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Learning with SASQuaTCh: a Novel Variational Quantum Transformer Architecture with Kernel-Based Self-Attention [0.464982780843177]
量子回路は、カーネルベースの演算子学習の観点から、自己認識機構を効率的に表現できることを示す。
本研究では、単純なゲート演算と多次元量子フーリエ変換を用いて、視覚トランスネットワークの深い層を表現することができる。
我々は,SASTQuaCh(Self-Attention Sequential Quantum Transformer Channel)と呼ばれる新しい変分量子回路を解析し,単純化された分類問題に対するその有用性を実証する。
論文 参考訳(メタデータ) (2024-03-21T18:00:04Z) - Quantum circuit synthesis with diffusion models [0.6554326244334868]
我々は、この変換を促進するために、生成機械学習モデル、特に拡散モデル(DM)をデノナイズする。
我々は、ゲートベースの量子回路内で所望の量子演算を生成するために、このモデルを操縦する。
我々は、DMを量子回路合成の重要な要素として想定し、実用的な応用だけでなく、理論的量子計算に関する洞察も強化する。
論文 参考訳(メタデータ) (2023-11-03T17:17:08Z) - A Framework for Demonstrating Practical Quantum Advantage: Racing
Quantum against Classical Generative Models [62.997667081978825]
生成モデルの一般化性能を評価するためのフレームワークを構築した。
古典的および量子生成モデル間の実用的量子優位性(PQA)に対する最初の比較レースを確立する。
以上の結果から,QCBMは,他の最先端の古典的生成モデルよりも,データ制限方式の方が効率的であることが示唆された。
論文 参考訳(メタデータ) (2023-03-27T22:48:28Z) - Quantum Vision Transformers [2.3558144417896583]
本稿では、複合行列に基づく量子変換器を含む、トレーニングと推論のための3種類の量子変換器を紹介する。
我々は,競争力のある標準的な医用画像データセット上で,量子トランスフォーマーの広範なシミュレーションを行った。
超伝導量子コンピュータに量子トランスを実装し,最大6量子ビット実験の励磁結果を得た。
論文 参考訳(メタデータ) (2022-09-16T20:51:23Z) - Generalization Metrics for Practical Quantum Advantage in Generative
Models [68.8204255655161]
生成モデリングは量子コンピュータにとって広く受け入れられている自然のユースケースである。
我々は,アルゴリズムの一般化性能を計測して,生成モデリングのための実用的な量子優位性を探索する,単純で曖昧な手法を構築した。
シミュレーションの結果、我々の量子にインスパイアされたモデルは、目に見えない、有効なサンプルを生成するのに、最大で68倍の費用がかかります。
論文 参考訳(メタデータ) (2022-01-21T16:35:35Z) - Quantum Machine Learning with SQUID [64.53556573827525]
分類問題に対するハイブリッド量子古典アルゴリズムを探索するオープンソースフレームワークであるScaled QUantum IDentifier (SQUID)を提案する。
本稿では、一般的なMNISTデータセットから標準バイナリ分類問題にSQUIDを使用する例を示す。
論文 参考訳(メタデータ) (2021-04-30T21:34:11Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
本稿では,E-scale ACCelerator(XACC)フレームワークにおける量子回路シミュレーションバックエンドとして機能する量子仮想マシン(TNQVM)の近代化版を提案する。
新バージョンは汎用的でスケーラブルなネットワーク処理ライブラリであるExaTNをベースにしており、複数の量子回路シミュレータを提供している。
ポータブルなXACC量子プロセッサとスケーラブルなExaTNバックエンドを組み合わせることで、ラップトップから将来のエクサスケールプラットフォームにスケール可能なエンドツーエンドの仮想開発環境を導入します。
論文 参考訳(メタデータ) (2021-04-21T13:26:42Z) - An end-to-end trainable hybrid classical-quantum classifier [0.0]
量子インスパイアされたテンソルネットワークと変分量子回路を組み合わせて教師付き学習タスクを行うハイブリッドモデルを提案する。
このアーキテクチャにより、モデルの古典的および量子的部分を同時にトレーニングすることができ、エンドツーエンドのトレーニングフレームワークを提供する。
論文 参考訳(メタデータ) (2021-02-04T05:19:54Z) - Generation of High-Resolution Handwritten Digits with an Ion-Trap
Quantum Computer [55.41644538483948]
本稿では, 量子回路に基づく生成モデルを構築し, 生成逆数ネットワークの事前分布を学習し, サンプル化する。
我々は、このハイブリッドアルゴリズムを171ドルのYb$+$ ion qubitsに基づいてイオントラップデバイスでトレーニングし、高品質な画像を生成する。
論文 参考訳(メタデータ) (2020-12-07T18:51:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。