論文の概要: Single-Qudit Quantum Neural Networks for Multiclass Classification
- arxiv url: http://arxiv.org/abs/2503.09269v1
- Date: Wed, 12 Mar 2025 11:12:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-13 15:40:42.963118
- Title: Single-Qudit Quantum Neural Networks for Multiclass Classification
- Title(参考訳): 多クラス分類のための単一量子ニューラルネットワーク
- Authors: Leandro C. Souza, Renato Portugal,
- Abstract要約: 本稿では,マルチクラス分類のための単一量子ニューラルネットワークを提案する。
我々の設計では$d$次元のユニタリ演算子を使用し、$d$はクラスの数に対応する。
我々は,MNISTデータセットとEMNISTデータセットを用いたモデルの評価を行い,競合精度を実証した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper proposes a single-qudit quantum neural network for multiclass classification, by using the enhanced representational capacity of high-dimensional qudit states. Our design employs an $d$-dimensional unitary operator, where $d$ corresponds to the number of classes, constructed using the Cayley transform of a skew-symmetric matrix, to efficiently encode and process class information. This architecture enables a direct mapping between class labels and quantum measurement outcomes, reducing circuit depth and computational overhead. To optimize network parameters, we introduce a hybrid training approach that combines an extended activation function -- derived from a truncated multivariable Taylor series expansion -- with support vector machine optimization for weight determination. We evaluate our model on the MNIST and EMNIST datasets, demonstrating competitive accuracy while maintaining a compact single-qudit quantum circuit. Our findings highlight the potential of qudit-based QNNs as scalable alternatives to classical deep learning models, particularly for multiclass classification. However, practical implementation remains constrained by current quantum hardware limitations. This research advances quantum machine learning by demonstrating the feasibility of higher-dimensional quantum systems for efficient learning tasks.
- Abstract(参考訳): 本稿では,高次元キューディット状態の表現能力の向上を利用して,マルチクラス分類のための単一量子ニューラルネットワークを提案する。
我々の設計では、$d$次元のユニタリ演算子を使用し、$d$はスキュー対称行列のケイリー変換を用いて構成され、クラス情報を効率的にエンコードし、処理する。
このアーキテクチャにより、クラスラベルと量子測定結果の直接マッピングが可能になり、回路深さと計算オーバーヘッドを低減できる。
ネットワークパラメータを最適化するために、トラッピングされた多変数テイラー級数展開から導かれる拡張活性化関数と、重み決定のためのサポートベクトルマシン最適化を組み合わせたハイブリッドトレーニング手法を導入する。
我々は、MNISTとEMNISTのデータセット上で、コンパクトな単一量子回路を維持しながら、競争精度を実証し、そのモデルを評価する。
本研究は,古典的ディープラーニングモデルのスケーラブルな代替手段として,特にマルチクラス分類において,quditベースのQNNの可能性を強調した。
しかし、実際の実装は現在の量子ハードウェアの制限によって制限されている。
本研究は,高次元量子システムによる効率的な学習タスクの実現可能性を示すことによって,量子機械学習を推し進める。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Quantum Transfer Learning for MNIST Classification Using a Hybrid Quantum-Classical Approach [0.0]
本研究は、画像分類タスクにおける量子コンピューティングと古典的機械学習の統合について検討する。
両パラダイムの強みを生かしたハイブリッド量子古典的アプローチを提案する。
実験結果から、ハイブリッドモデルが量子コンピューティングと古典的手法を統合する可能性を示す一方で、量子結果に基づいて訓練された最終モデルの精度は、圧縮された特徴に基づいて訓練された古典的モデルよりも低いことが示唆された。
論文 参考訳(メタデータ) (2024-08-05T22:16:27Z) - A Framework for Demonstrating Practical Quantum Advantage: Racing
Quantum against Classical Generative Models [62.997667081978825]
生成モデルの一般化性能を評価するためのフレームワークを構築した。
古典的および量子生成モデル間の実用的量子優位性(PQA)に対する最初の比較レースを確立する。
以上の結果から,QCBMは,他の最先端の古典的生成モデルよりも,データ制限方式の方が効率的であることが示唆された。
論文 参考訳(メタデータ) (2023-03-27T22:48:28Z) - Vertical Layering of Quantized Neural Networks for Heterogeneous
Inference [57.42762335081385]
量子化モデル全体を1つのモデルにカプセル化するための,ニューラルネットワーク重みの新しい垂直層表現について検討する。
理論的には、1つのモデルのトレーニングとメンテナンスのみを必要としながら、オンデマンドサービスの正確なネットワークを達成できます。
論文 参考訳(メタデータ) (2022-12-10T15:57:38Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - Multiclass classification using quantum convolutional neural networks
with hybrid quantum-classical learning [0.5999777817331318]
本稿では,量子畳み込みニューラルネットワークに基づく量子機械学習手法を提案する。
提案手法を用いて,MNISTデータセットの4クラス分類を,データエンコーディングの8つのキュービットと4つのアクニラキュービットを用いて実証する。
この結果から,学習可能なパラメータの数に匹敵する古典的畳み込みニューラルネットワークによる解の精度が示された。
論文 参考訳(メタデータ) (2022-03-29T09:07:18Z) - Cluster-Promoting Quantization with Bit-Drop for Minimizing Network
Quantization Loss [61.26793005355441]
クラスタ・プロモーティング・量子化(CPQ)は、ニューラルネットワークに最適な量子化グリッドを見つける。
DropBitsは、ニューロンの代わりにランダムにビットをドロップする標準のドロップアウト正規化を改訂する新しいビットドロップ技術である。
本手法を様々なベンチマークデータセットとネットワークアーキテクチャ上で実験的に検証する。
論文 参考訳(メタデータ) (2021-09-05T15:15:07Z) - Quantum Machine Learning with SQUID [64.53556573827525]
分類問題に対するハイブリッド量子古典アルゴリズムを探索するオープンソースフレームワークであるScaled QUantum IDentifier (SQUID)を提案する。
本稿では、一般的なMNISTデータセットから標準バイナリ分類問題にSQUIDを使用する例を示す。
論文 参考訳(メタデータ) (2021-04-30T21:34:11Z) - An end-to-end trainable hybrid classical-quantum classifier [0.0]
量子インスパイアされたテンソルネットワークと変分量子回路を組み合わせて教師付き学習タスクを行うハイブリッドモデルを提案する。
このアーキテクチャにより、モデルの古典的および量子的部分を同時にトレーニングすることができ、エンドツーエンドのトレーニングフレームワークを提供する。
論文 参考訳(メタデータ) (2021-02-04T05:19:54Z) - Hybrid quantum-classical classifier based on tensor network and
variational quantum circuit [0.0]
本稿では、量子インスパイアされたテンソルネットワーク(TN)と変分量子回路(VQC)を組み合わせて教師付き学習タスクを行うハイブリッドモデルを提案する。
低結合次元の行列積状態に基づくTNは、MNISTデータセットのバイナリ分類において、VQCの入力のためのデータを圧縮する特徴抽出器としてPCAよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-11-30T09:43:59Z) - Recurrent Quantum Neural Networks [7.6146285961466]
リカレントニューラルネットワークは、機械学習における多くのシーケンス対シーケンスモデルの基盤となっている。
非自明なタスクに対して実証可能な性能を持つ量子リカレントニューラルネットワーク(QRNN)を構築する。
我々はQRNNをMNIST分類で評価し、QRNNに各画像ピクセルを供給し、また、最新のデータ拡張を前処理のステップとして利用する。
論文 参考訳(メタデータ) (2020-06-25T17:59:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。