論文の概要: Tangent differential privacy
- arxiv url: http://arxiv.org/abs/2406.04535v1
- Date: Thu, 6 Jun 2024 22:11:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-10 17:47:54.366814
- Title: Tangent differential privacy
- Title(参考訳): タンジェント差分プライバシー
- Authors: Lexing Ying,
- Abstract要約: 我々は、接する差分プライバシーと呼ばれる新しいタイプの差分プライバシーを提案する。
データディストリビューション全体で一様に定義される通常の差分プライバシと比較すると、特定のデータ配信に合わせて、具体的な差分プライバシが調整される。
- 参考スコア(独自算出の注目度): 13.796981813494199
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Differential privacy is a framework for protecting the identity of individual data points in the decision-making process. In this note, we propose a new form of differential privacy called tangent differential privacy. Compared with the usual differential privacy that is defined uniformly across data distributions, tangent differential privacy is tailored towards a specific data distribution of interest. It also allows for general distribution distances such as total variation distance and Wasserstein distance. In the case of risk minimization, we show that entropic regularization guarantees tangent differential privacy under rather general conditions on the risk function.
- Abstract(参考訳): 差分プライバシーは、意思決定プロセスにおける個々のデータポイントのアイデンティティを保護するためのフレームワークである。
本稿では,差分プライバシーという新しいタイプの差分プライバシーを提案する。
データディストリビューション全体で一様に定義される通常の差分プライバシと比較すると、特定のデータ配信に合わせて、具体的な差分プライバシが調整される。
また、総変分距離やワッサーシュタイン距離などの一般分布距離も可能である。
リスク最小化の場合、エントロピー正則化により、リスク関数のより一般的な条件下では、具体的な差分プライバシーが保証されることを示す。
関連論文リスト
- Optimal Federated Learning for Nonparametric Regression with Heterogeneous Distributed Differential Privacy Constraints [5.3595271893779906]
本研究では,異なるサーバにまたがる分散サンプルのコンテキストにおける非パラメトリック回帰のためのフェデレーション学習について検討した。
統計の正確さとプライバシーの保護のトレードオフに光を当てている。
論文 参考訳(メタデータ) (2024-06-10T19:34:07Z) - Federated Transfer Learning with Differential Privacy [21.50525027559563]
我々は、信頼された中央サーバを仮定することなく、各データセットに対するプライバシー保証を提供する、テキストフェデレーションによる差分プライバシーの概念を定式化する。
フェデレートされた差分プライバシは、確立されたローカルと中央の差分プライバシモデルの間の中間プライバシモデルであることを示す。
論文 参考訳(メタデータ) (2024-03-17T21:04:48Z) - Optimal Private Discrete Distribution Estimation with One-bit Communication [63.413106413939836]
1ビット通信制約を伴う個別分布推定問題を考える。
1ビット通信制約下での最悪のトレードオフの1次を特徴付ける。
これらの結果は,1ビット通信制約下でのプライバシユーティリティトレードオフの最適依存性を示す。
論文 参考訳(メタデータ) (2023-10-17T05:21:19Z) - Causal Inference with Differentially Private (Clustered) Outcomes [16.166525280886578]
ランダム化実験から因果効果を推定することは、参加者が反応を明らかにすることに同意すれば実現可能である。
我々は,任意のクラスタ構造を利用する新たな差分プライバシメカニズムであるCluster-DPを提案する。
クラスタの品質を直感的に測定することで,プライバシ保証を維持しながら分散損失を改善することができることを示す。
論文 参考訳(メタデータ) (2023-08-02T05:51:57Z) - How Do Input Attributes Impact the Privacy Loss in Differential Privacy? [55.492422758737575]
DPニューラルネットワークにおけるオブジェクトごとの規範と個人のプライバシ損失との関係について検討する。
プライバシ・ロス・インプット・サセプティビリティ(PLIS)と呼ばれる新しい指標を導入し、被験者のプライバシ・ロスを入力属性に適応させることを可能にした。
論文 参考訳(メタデータ) (2022-11-18T11:39:03Z) - Algorithms with More Granular Differential Privacy Guarantees [65.3684804101664]
我々は、属性ごとのプライバシー保証を定量化できる部分微分プライバシー(DP)について検討する。
本研究では,複数の基本データ分析および学習タスクについて検討し,属性ごとのプライバシパラメータが個人全体のプライバシーパラメータよりも小さい設計アルゴリズムについて検討する。
論文 参考訳(メタデータ) (2022-09-08T22:43:50Z) - DP2-Pub: Differentially Private High-Dimensional Data Publication with
Invariant Post Randomization [58.155151571362914]
本稿では,2つのフェーズで動作する差分プライベートな高次元データパブリッシング機構(DP2-Pub)を提案する。
属性をクラスタ内凝集度の高い低次元クラスタに分割し、クラスタ間の結合度を低くすることで、適切なプライバシ予算を得ることができる。
また、DP2-Pubメカニズムを、ローカルの差分プライバシーを満たす半正直なサーバでシナリオに拡張します。
論文 参考訳(メタデータ) (2022-08-24T17:52:43Z) - Private measures, random walks, and synthetic data [7.5764890276775665]
微分プライバシーは、情報理論のセキュリティ保証を提供する数学的概念である。
我々は、プライベートな合成データを効率的に構築できるデータセットからプライベートな尺度を開発する。
我々の構築における重要な要素は、独立確率変数と同様の連立分布を持つ新しい超規則ランダムウォークである。
論文 参考訳(メタデータ) (2022-04-20T00:06:52Z) - Distribution-Invariant Differential Privacy [4.700764053354502]
本研究では,高い統計的精度と厳密な差分プライバシーを両立する分布不変民営化法(DIP)を提案する。
同じ厳密なプライバシー保護の下で、DIPは2つのシミュレーションと3つの実世界のベンチマークで優れた統計的精度を達成する。
論文 参考訳(メタデータ) (2021-11-08T22:26:50Z) - Partial sensitivity analysis in differential privacy [58.730520380312676]
それぞれの入力特徴が個人のプライバシ損失に与える影響について検討する。
プライベートデータベース上でのクエリに対する我々のアプローチを実験的に評価する。
また、合成データにおけるニューラルネットワークトレーニングの文脈における知見についても検討する。
論文 参考訳(メタデータ) (2021-09-22T08:29:16Z) - Robustness Threats of Differential Privacy [70.818129585404]
我々は、いくつかの設定で差分プライバシーをトレーニングしたネットワークが、非プライベートバージョンに比べてさらに脆弱であることを実験的に実証した。
本研究では,勾配クリッピングや雑音付加などのニューラルネットワークトレーニングの主成分が,モデルの堅牢性に与える影響について検討する。
論文 参考訳(メタデータ) (2020-12-14T18:59:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。