論文の概要: Adaptive Interface-PINNs (AdaI-PINNs): An Efficient Physics-informed Neural Networks Framework for Interface Problems
- arxiv url: http://arxiv.org/abs/2406.04626v2
- Date: Mon, 10 Jun 2024 16:28:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-11 23:05:25.479712
- Title: Adaptive Interface-PINNs (AdaI-PINNs): An Efficient Physics-informed Neural Networks Framework for Interface Problems
- Title(参考訳): Adaptive Interface-PINNs (AdaI-PINNs): インタフェース問題のための効率的な物理情報ニューラルネットワークフレームワーク
- Authors: Sumanta Roy, Chandrasekhar Annavarapu, Pratanu Roy, Antareep Kumar Sarma,
- Abstract要約: AdaI-PINN(Adaptive Interface-PINN)と呼ばれる,効率的な物理情報ニューラルネットワーク(PINN)フレームワークを提案する。
このフレームワークは、前身であるInterface PINNまたはI-PINNの強化版である。
AdaI-PINNでは、アクティベーション機能は、ニューラルネットワークの他のパラメータとともにトレーニングされる斜面でのみ異なる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an efficient physics-informed neural networks (PINNs) framework, termed Adaptive Interface-PINNs (AdaI-PINNs), to improve the modeling of interface problems with discontinuous coefficients and/or interfacial jumps. This framework is an enhanced version of its predecessor, Interface PINNs or I-PINNs (Sarma et al.; https://dx.doi.org/10.2139/ssrn.4766623), which involves domain decomposition and assignment of different predefined activation functions to the neural networks in each subdomain across a sharp interface, while keeping all other parameters of the neural networks identical. In AdaI-PINNs, the activation functions vary solely in their slopes, which are trained along with the other parameters of the neural networks. This makes the AdaI-PINNs framework fully automated without requiring preset activation functions. Comparative studies on one-dimensional, two-dimensional, and three-dimensional benchmark elliptic interface problems reveal that AdaI-PINNs outperform I-PINNs, reducing computational costs by 2-6 times while producing similar or better accuracy.
- Abstract(参考訳): 本稿では、不連続な係数や/または界面ジャンプを伴うインタフェース問題のモデル化を改善するために、適応インターフェース-PINN(Adaptive Interface-PINN)と呼ばれる効率的な物理情報ニューラルネットワーク(PINN)フレームワークを提案する。
このフレームワークは、前身であるInterface PINNまたはI-PINN(Sarma et al ; https://dx.doi.org/10.2139/ssrn.4766623)の強化版であり、ニューラルネットワークの他のパラメータをすべて同一にしつつ、各サブドメイン内の各サブドメインで定義されたアクティベーション関数のドメイン分解と割り当てを含む。
AdaI-PINNでは、アクティベーション機能は、ニューラルネットワークの他のパラメータとともにトレーニングされる斜面でのみ異なる。
これにより、AdaI-PINNsフレームワークは、プリセットされたアクティベーション関数を必要とせずに完全に自動化される。
1次元,2次元,3次元のベンチマーク楕円型インタフェース問題の比較研究により,AdaI-PINNはI-PINNよりも優れており,計算コストが2~6倍削減され,類似性や精度が向上した。
関連論文リスト
- Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
ニューロモルフィックコンピューティングでは、スパイクニューラルネットワーク(SNN)が推論タスクを実行し、シーケンシャルデータを含むワークロードの大幅な効率向上を提供する。
ハードウェアとソフトウェアの最近の進歩は、スパイクニューロン間で交換された各スパイクに数ビットのペイロードを埋め込むことにより、推論精度をさらに高めることを示した。
本稿では,マルチレベルSNNを用いた無線ニューロモルフィック分割計算アーキテクチャについて検討する。
論文 参考訳(メタデータ) (2024-11-07T14:08:35Z) - Improved physics-informed neural network in mitigating gradient related failures [11.356695216531328]
物理インフォームドニューラルネットワーク(PINN)は、高度なデータ駆動技術で基本的な物理原理を統合する。
PINNは勾配流の剛性に悩まされ、予測能力が制限される。
本稿では,勾配関連障害を軽減するために改良されたPINNを提案する。
論文 参考訳(メタデータ) (2024-07-28T07:58:10Z) - Binary structured physics-informed neural networks for solving equations
with rapidly changing solutions [3.6415476576196055]
偏微分方程式(PDE)を解くための有望なアプローチとして、物理情報ニューラルネットワーク(PINN)が登場した。
本稿では、ニューラルネットワークコンポーネントとしてバイナリ構造化ニューラルネットワーク(BsNN)を用いる、バイナリ構造化物理インフォームドニューラルネットワーク(BsPINN)フレームワークを提案する。
BsPINNは、PINNよりも収束速度と精度が優れている。
論文 参考訳(メタデータ) (2024-01-23T14:37:51Z) - Permutation Equivariant Neural Functionals [92.0667671999604]
この研究は、他のニューラルネットワークの重みや勾配を処理できるニューラルネットワークの設計を研究する。
隠れた層状ニューロンには固有の順序がないため, 深いフィードフォワードネットワークの重みに生じる置換対称性に着目する。
実験の結果, 置換同変ニューラル関数は多種多様なタスクに対して有効であることがわかった。
論文 参考訳(メタデータ) (2023-02-27T18:52:38Z) - A Dimension-Augmented Physics-Informed Neural Network (DaPINN) with High
Level Accuracy and Efficiency [0.20391237204597357]
物理インフォームドニューラルネットワーク(PINN)は様々な分野に広く応用されている。
本稿では,新しい次元拡張物理インフォームドニューラルネットワーク(DaPINN)を提案する。
DaPINNは同時に、PINNの精度と効率を大幅に向上させる。
論文 参考訳(メタデータ) (2022-10-19T15:54:37Z) - Neural Attentive Circuits [93.95502541529115]
我々は、NAC(Neural Attentive Circuits)と呼ばれる汎用的でモジュラーなニューラルアーキテクチャを導入する。
NACは、ドメイン知識を使わずに、ニューラルネットワークモジュールのパラメータ化と疎結合を学習する。
NACは推論時に8倍のスピードアップを達成するが、性能は3%以下である。
論文 参考訳(メタデータ) (2022-10-14T18:00:07Z) - MRF-PINN: A Multi-Receptive-Field convolutional physics-informed neural
network for solving partial differential equations [6.285167805465505]
物理インフォームドニューラルネットワーク(PINN)は、従来の偏微分方程式(PDE)の解法よりも開発コストと解決コストを低減できる。
パラメータ共有、空間的特徴抽出、低推論コストの利点により、畳み込みニューラルネットワーク(CNN)はPINNでますます利用されている。
論文 参考訳(メタデータ) (2022-09-06T12:26:22Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
物理インフォームドニューラルネットワーク(PINN)は、ディープラーニングのパワーを科学計算にもたらし、科学と工学の実践に革命をもたらしている。
本稿では,ニューラル・アーキテクチャ・サーチ(NAS)手法をPINN設計に適用したAuto-PINNを提案する。
標準PDEベンチマークを用いた包括的事前実験により、PINNの構造と性能の関係を探索することができる。
論文 参考訳(メタデータ) (2022-05-27T03:24:31Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z) - Neural Parameter Allocation Search [57.190693718951316]
ニューラルネットワークのトレーニングには、メモリの量を増やす必要がある。
既存の手法では、ネットワークには多くの同一層があり、一般化に失敗する手作りの共有戦略を利用する。
我々は、任意のパラメータ予算を与えられたニューラルネットワークをトレーニングする新しいタスクであるNPAS(Neural Allocation Search)を紹介する。
NPASは、コンパクトネットワークを創出する低予算体制と、推論FLOPを増大させることなく性能を高めるために、新たな高予算体制の両方をカバーしている。
論文 参考訳(メタデータ) (2020-06-18T15:01:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。