EAIA: An Efficient and Anonymous Identity Authentication Scheme in 5G-V2V
- URL: http://arxiv.org/abs/2406.04705v1
- Date: Fri, 7 Jun 2024 07:26:09 GMT
- Title: EAIA: An Efficient and Anonymous Identity Authentication Scheme in 5G-V2V
- Authors: Qianmin Du, Jianhong Zhou, Maode Ma,
- Abstract summary: This paper proposes an efficient anonymous V2V identity authentication protocol tailored for scenarios that lack Roadside Units (RSUs) support.
The proposed protocol has been formally assessed using the Scyther tool, demonstrating its capability to withstand major typical malicious attacks.
- Score: 14.315350766867814
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vehicle Ad-hoc Networks (VANETs) have experienced significant development in recent years, playing a crucial role in enhancing the driving experience by enabling safer and more efficient inter-vehicle interactions through information exchange. Vehicle-to-vehicle (V2V) communication is particularly vital as it not only helps to prevent collisions and improve traffic efficiency but also provides essential situational awareness to drivers or autonomous driving systems. Communication is typically supported by Roadside Units (RSUs); however, in practical applications, vehicles may exceed the communication range of RSUs, thus exposing them to various malicious attacks. Additionally, considering the limited computational resources of onboard units (OBUs) in vehicles, there is a high demand for designing lightweight security protocols that support V2V communication. To address this issue, this paper proposes an efficient anonymous V2V identity authentication protocol tailored for scenarios that lack RSU support. The proposed protocol has been formally assessed using the Scyther tool, demonstrating its capability to withstand major typical malicious attacks. Performance evaluations indicate that the proposed protocol is efficient in terms of communication and computational overhead, making it a viable solution for V2V vehicle communication.
Related papers
- DRL-Based Optimization for AoI and Energy Consumption in C-V2X Enabled IoV [33.32647734550201]
This paper analyzes the effects of multi-priority queues and NOMA on Age of Information in the C-V2X vehicular communication system.
The proposed approach demonstrates its advances in terms of energy consumption and AoI.
arXiv Detail & Related papers (2024-11-20T07:59:35Z) - Enhanced Cooperative Perception for Autonomous Vehicles Using Imperfect Communication [0.24466725954625887]
We propose a novel approach to realize an optimized Cooperative Perception (CP) under constrained communications.
At the core of our approach is recruiting the best helper from the available list of front vehicles to augment the visual range.
Our results demonstrate the efficacy of our two-step optimization process in improving the overall performance of cooperative perception.
arXiv Detail & Related papers (2024-04-10T15:37:15Z) - DRL-Based RAT Selection in a Hybrid Vehicular Communication Network [2.345902601618188]
Cooperative intelligent transport systems rely on a set of Vehicle-to-Everything (V2X) applications to enhance road safety.
New V2X applications depend on a significant amount of shared data and require high reliability, low end-to-end (E2E) latency, and high throughput.
We propose an intelligent, scalable hybrid vehicular communication architecture that leverages the performance of multiple Radio Access Technologies (RATs) to meet the needs of these applications.
arXiv Detail & Related papers (2024-04-03T08:13:07Z) - Differentiated Security Architecture for Secure and Efficient Infotainment Data Communication in IoV Networks [55.340315838742015]
Negligence on the security of infotainment data communication in IoV networks can unintentionally open an easy access point for social engineering attacks.
In particular, we first classify data communication in the IoV network, examine the security focus of each data communication, and then develop a differentiated security architecture to provide security protection on a file-to-file basis.
arXiv Detail & Related papers (2024-03-29T12:01:31Z) - A Survey and Comparative Analysis of Security Properties of CAN Authentication Protocols [92.81385447582882]
The Controller Area Network (CAN) bus leaves in-vehicle communications inherently non-secure.
This paper reviews and compares the 15 most prominent authentication protocols for the CAN bus.
We evaluate protocols based on essential operational criteria that contribute to ease of implementation.
arXiv Detail & Related papers (2024-01-19T14:52:04Z) - V2X-Lead: LiDAR-based End-to-End Autonomous Driving with
Vehicle-to-Everything Communication Integration [4.166623313248682]
This paper presents a LiDAR-based end-to-end autonomous driving method with Vehicle-to-Everything (V2X) communication integration.
The proposed method aims to handle imperfect partial observations by fusing the onboard LiDAR sensor and V2X communication data.
arXiv Detail & Related papers (2023-09-26T20:26:03Z) - Interruption-Aware Cooperative Perception for V2X Communication-Aided
Autonomous Driving [49.42873226593071]
We propose V2X communication INterruption-aware COoperative Perception (V2X-INCOP) for V2X communication-aided autonomous driving.
We use historical cooperation information to recover missing information due to the interruptions and alleviate the impact of the interruption issue.
Experiments on three public cooperative perception datasets demonstrate that the proposed method is effective in alleviating the impacts of communication interruption on cooperative perception.
arXiv Detail & Related papers (2023-04-24T04:59:13Z) - Learning for Vehicle-to-Vehicle Cooperative Perception under Lossy
Communication [30.100647849646467]
We study the side effect (e.g., detection performance drop) by the lossy communication in the V2V Cooperative Perception.
We propose a novel intermediate LC-aware feature fusion method to relieve the side effect of lossy communication.
The proposed method is quite effective for the cooperative point cloud based 3D object detection under lossy V2V communication.
arXiv Detail & Related papers (2022-12-16T04:18:47Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
This paper examines the role of imitation learning in bridging the gap between control strategies and realistic limitations in communication and sensing.
We show that imitation learning can succeed in deriving policies that, if adopted by 5% of vehicles, may boost the energy-efficiency of networks with varying traffic conditions by 15% using only local observations.
arXiv Detail & Related papers (2022-06-28T17:08:31Z) - COOPERNAUT: End-to-End Driving with Cooperative Perception for Networked
Vehicles [54.61668577827041]
We introduce COOPERNAUT, an end-to-end learning model that uses cross-vehicle perception for vision-based cooperative driving.
Our experiments on AutoCastSim suggest that our cooperative perception driving models lead to a 40% improvement in average success rate.
arXiv Detail & Related papers (2022-05-04T17:55:12Z) - V2VNet: Vehicle-to-Vehicle Communication for Joint Perception and
Prediction [74.42961817119283]
We use vehicle-to-vehicle (V2V) communication to improve the perception and motion forecasting performance of self-driving vehicles.
By intelligently aggregating the information received from multiple nearby vehicles, we can observe the same scene from different viewpoints.
arXiv Detail & Related papers (2020-08-17T17:58:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.