Enhanced SPS Velocity-adaptive Scheme: Access Fairness in 5G NR V2I Networks
- URL: http://arxiv.org/abs/2501.08037v2
- Date: Thu, 16 Jan 2025 06:44:29 GMT
- Title: Enhanced SPS Velocity-adaptive Scheme: Access Fairness in 5G NR V2I Networks
- Authors: Xiao Xu, Qiong Wu, Pingyi Fan, Kezhi Wang,
- Abstract summary: Vehicle-to-Infrastructure (V2I) technology enables information exchange between vehicles and road infrastructure.
This paper formulates an optimization problem for vehicular networks.
It proposes a multi-objective optimization scheme to address it by adjusting the selection window in the SPS mechanism of 5G NR V2I mode-2.
- Score: 20.986636246659685
- License:
- Abstract: Vehicle-to-Infrastructure (V2I) technology enables information exchange between vehicles and road infrastructure. Specifically, when a vehicle approaches a roadside unit (RSU), it can exchange information with the RSU to obtain accurate data that assists in driving. With the release of the 3rd Generation Partnership Project (3GPP) Release 16, which includes the 5G New Radio (NR) Vehicle-to-Everything (V2X) standards, vehicles typically adopt mode-2 communication using sensing-based semi-persistent scheduling (SPS) for resource allocation. In this approach, vehicles identify candidate resources within a selection window and exclude ineligible resources based on information from a sensing window. However, vehicles often drive at different speeds, resulting in varying amounts of data transmission with RSUs as they pass by, which leads to unfair access. Therefore, it is essential to design an access scheme that accounts for different vehicle speeds to achieve fair access across the network. This paper formulates an optimization problem for vehicular networks and proposes a multi-objective optimization scheme to address it by adjusting the selection window in the SPS mechanism of 5G NR V2I mode-2. Simulation results demonstrate the effectiveness of the proposed scheme
Related papers
- Joint Channel Selection using FedDRL in V2X [20.96900576250422]
Vehicle-to-everything (V2X) communication technology is revolutionizing transportation by enabling interactions between vehicles, devices, and infrastructures.
In this paper, we study the problem of joint channel selection, where vehicles with different technologies choose one or more Access Points (APs) to transmit messages in a network.
We propose an approach based on Federated Deep Reinforcement Learning (FedDRL), which enables each vehicle to benefit from other vehicles' experiences.
arXiv Detail & Related papers (2024-10-03T14:04:08Z) - Deep-Reinforcement-Learning-Based AoI-Aware Resource Allocation for RIS-Aided IoV Networks [43.443526528832145]
We propose a RIS-assisted internet of vehicles (IoV) network, considering the vehicle-to-everything (V2X) communication method.
In order to improve the timeliness of vehicle-to-infrastructure (V2I) links and the stability of vehicle-to-vehicle (V2V) links, we introduce the age of information (AoI) model and the payload transmission probability model.
arXiv Detail & Related papers (2024-06-17T06:16:07Z) - DRL-Based RAT Selection in a Hybrid Vehicular Communication Network [2.345902601618188]
Cooperative intelligent transport systems rely on a set of Vehicle-to-Everything (V2X) applications to enhance road safety.
New V2X applications depend on a significant amount of shared data and require high reliability, low end-to-end (E2E) latency, and high throughput.
We propose an intelligent, scalable hybrid vehicular communication architecture that leverages the performance of multiple Radio Access Technologies (RATs) to meet the needs of these applications.
arXiv Detail & Related papers (2024-04-03T08:13:07Z) - A V2X-based Privacy Preserving Federated Measuring and Learning System [0.0]
We propose a federated measurement and learning system that provides real-time data to fellow vehicles over Vehicle-to-Vehicle (V2V) communication.
We also operate a federated learning scheme over the Vehicle-to-Network (V2N) link to create a predictive model of the transportation network.
Results indicate that the proposed FL scheme improves learning performance and prevents eavesdropping at the aggregator server side.
arXiv Detail & Related papers (2024-01-24T23:11:11Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
Federated learning empowered connected autonomous vehicle (FLCAV) has been proposed.
FLCAV preserves privacy while reducing communication and annotation costs.
It is challenging to determine the network resources and road sensor poses for multi-stage training.
arXiv Detail & Related papers (2022-06-03T23:55:45Z) - COOPERNAUT: End-to-End Driving with Cooperative Perception for Networked
Vehicles [54.61668577827041]
We introduce COOPERNAUT, an end-to-end learning model that uses cross-vehicle perception for vision-based cooperative driving.
Our experiments on AutoCastSim suggest that our cooperative perception driving models lead to a 40% improvement in average success rate.
arXiv Detail & Related papers (2022-05-04T17:55:12Z) - AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles [61.21359293642559]
The dynamics of traffic and the heterogeneous requirements of different IoV applications are not considered in most existing studies.
We consider a hybrid traffic control scheme and use proximal policy optimization (PPO) method to tackle it.
arXiv Detail & Related papers (2022-03-05T10:54:05Z) - An Energy Consumption Model for Electrical Vehicle Networks via Extended
Federated-learning [50.85048976506701]
This paper proposes a novel solution to range anxiety based on a federated-learning model.
It is capable of estimating battery consumption and providing energy-efficient route planning for vehicle networks.
arXiv Detail & Related papers (2021-11-13T15:03:44Z) - Online and Adaptive Parking Availability Mapping: An Uncertainty-Aware
Active Sensing Approach for Connected Vehicles [1.7259824817932292]
We propose an online and adaptive scheme for parking availability mapping.
Specifically, we adopt an information-seeking active sensing approach to select the incoming data, thus preserving the onboard storage and processing resources.
We compare the proposed algorithm with several baselines, which attain inferior performance in terms of mapping convergence speed and adaptivity capabilities.
arXiv Detail & Related papers (2021-05-01T13:35:36Z) - Vehicular Cooperative Perception Through Action Branching and Federated
Reinforcement Learning [101.64598586454571]
A novel framework is proposed to allow reinforcement learning-based vehicular association, resource block (RB) allocation, and content selection of cooperative perception messages (CPMs)
A federated RL approach is introduced in order to speed up the training process across vehicles.
Results show that federated RL improves the training process, where better policies can be achieved within the same amount of time compared to the non-federated approach.
arXiv Detail & Related papers (2020-12-07T02:09:15Z) - Reinforcement Learning Based Vehicle-cell Association Algorithm for
Highly Mobile Millimeter Wave Communication [53.47785498477648]
This paper investigates the problem of vehicle-cell association in millimeter wave (mmWave) communication networks.
We first formulate the user state (VU) problem as a discrete non-vehicle association optimization problem.
The proposed solution achieves up to 15% gains in terms sum of user complexity and 20% reduction in VUE compared to several baseline designs.
arXiv Detail & Related papers (2020-01-22T08:51:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.