論文の概要: Boosting the Validity of Multi-Class Quantum Outputs: Living on the Edge
- arxiv url: http://arxiv.org/abs/2406.04944v2
- Date: Fri, 13 Dec 2024 22:09:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:49:58.438026
- Title: Boosting the Validity of Multi-Class Quantum Outputs: Living on the Edge
- Title(参考訳): マルチクラスの量子出力の妥当性を高める:エッジに生きる
- Authors: Nathaniel Helgesen, Michael Felsberg, Jan-Åke Larsson,
- Abstract要約: 本稿は,n次元単純体のエッジへの計測の新たなマッピングを導入し,マルチクラス分類における出力表現に焦点を当てた。
提案手法は,有効回路出力サンプル数を直接的に改善すると共に,その出力の精度を1ホット符号化よりも向上することを示す。
- 参考スコア(独自算出の注目度): 14.154332784970785
- License:
- Abstract: Quantum machine learning (QML) aims to use quantum computers to enhance machine learning, but it is often limited by the required number of samples due to quantum noise and statistical limits on expectation value estimates. While efforts are made to reduce quantum noise, less attention is given to boosting the quality of the discrete outputs from Variational Quantum Classifiers (VQCs) to reduce the number of samples needed to make confident predictions. This paper focuses on output representations in multi-class classification, introducing a new mapping of qubit measurements to edges of an n-dimensional simplex, representing independent binary decisions between each pair of classes. We describe this mapping and demonstrate how it offers a direct improvement to the number of valid circuit output samples as well as the accuracy of those outputs over one-hot encoding while advocating for few-sample accuracy as a primary goal for effective VQCs.
- Abstract(参考訳): 量子機械学習(QML)は、量子コンピュータを用いて機械学習を強化することを目的としているが、量子ノイズと予測値推定の統計的制限のために必要とされるサンプル数によって制限されることが多い。
量子ノイズを減らすために努力されているが、信頼性の高い予測を行うのに必要なサンプルの数を減らすために、変分量子分類器(VQC)からの離散出力の品質を高めることにはあまり注意が払わない。
本稿は,n次元単純体のエッジへの量子ビット測度の新しいマッピングを導入し,各クラス間の独立な二項決定を表現した多クラス分類における出力表現に焦点を当てる。
本稿では,このマッピングについて述べるとともに,有効なVQCの主目的として,数サンプルの精度を主張しながら,有効な回路出力サンプルの数を直接的に改善する方法について述べる。
関連論文リスト
- QSpec: Speculative Decoding with Complementary Quantization Schemes [37.007621357142725]
量子化は、推論を加速し、大きな言語モデルのメモリ消費を減らすために、実質的に採用されている。
本稿では、投機的復号化のための2つの相補的量子化スキームをシームレスに統合するQSPECと呼ばれる新しい量子化パラダイムを提案する。
QSPECは、品質上の妥協なしにトークン生成スループットを最大1.80倍向上させる。
論文 参考訳(メタデータ) (2024-10-15T05:57:51Z) - Certainty In, Certainty Out: REVQCs for Quantum Machine Learning [15.908051575681458]
高精度かつ高精度なサンプル推測が可能な統計理論について論じる。
本稿では,このトレーニング手法の有効性を,いくつかの有効な変分量子回路を用いて評価する。
論文 参考訳(メタデータ) (2023-10-16T17:53:30Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
本稿では,限られた情報伝達と保守的絡み合い生成を含む短期分散量子コンピューティングを提案する。
我々はこれらの概念に基づいて、変分量子アルゴリズムの断片化事前学習のための近似回路切断手法を作成する。
論文 参考訳(メタデータ) (2023-09-11T18:00:00Z) - Quantum Conformal Prediction for Reliable Uncertainty Quantification in
Quantum Machine Learning [47.991114317813555]
量子モデルは暗黙の確率予測器を実装し、測定ショットを通じて各入力に対して複数のランダムな決定を生成する。
本稿では、そのようなランダム性を利用して、モデルの不確実性を確実に捉えることができる分類と回帰の両方の予測セットを定義することを提案する。
論文 参考訳(メタデータ) (2023-04-06T22:05:21Z) - Certified Robustness of Quantum Classifiers against Adversarial Examples
through Quantum Noise [68.1992787416233]
量子ランダムな回転雑音を加えることで、敵攻撃に対する量子分類器のロバスト性を向上できることを示す。
我々は、量子分類器が敵の例に対して防御できるように、証明された堅牢性を導出する。
論文 参考訳(メタデータ) (2022-11-02T05:17:04Z) - Shot-frugal and Robust quantum kernel classifiers [12.146571029233435]
量子カーネル法は、機械学習における量子スピードアップの候補である。
分類タスクにおいて,その目的は信頼性の高い分類であり,正確なカーネル評価ではないことを示す。
我々は分類の信頼性を特徴付ける新しい指標を動機付けている。
論文 参考訳(メタデータ) (2022-10-13T12:48:23Z) - Deep Non-Crossing Quantiles through the Partial Derivative [0.6299766708197883]
量子回帰(Quantile Regression)は、単一の条件量子を近似する方法を提供する。
QRロス関数の最小化は、非交差量子化を保証しない。
任意の数の量子を予測するための汎用的なディープラーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-01-30T15:35:21Z) - Cluster-Promoting Quantization with Bit-Drop for Minimizing Network
Quantization Loss [61.26793005355441]
クラスタ・プロモーティング・量子化(CPQ)は、ニューラルネットワークに最適な量子化グリッドを見つける。
DropBitsは、ニューロンの代わりにランダムにビットをドロップする標準のドロップアウト正規化を改訂する新しいビットドロップ技術である。
本手法を様々なベンチマークデータセットとネットワークアーキテクチャ上で実験的に検証する。
論文 参考訳(メタデータ) (2021-09-05T15:15:07Z) - Post-Training Quantization for Vision Transformer [85.57953732941101]
本稿では,視覚変換器のメモリ記憶量と計算コストを削減するための学習後量子化アルゴリズムを提案する。
約8ビット量子化を用いて、ImageNetデータセット上でDeiT-Bモデルを用いて81.29%のトップ-1の精度を得ることができる。
論文 参考訳(メタデータ) (2021-06-27T06:27:22Z) - Robust quantum classifier with minimal overhead [0.8057006406834467]
カーネル法に基づくバイナリ分類のためのいくつかの量子アルゴリズムが提案されている。
これらのアルゴリズムは期待値を推定することに依存しており、高額な量子データ符号化手順を何度も繰り返す必要がある。
カーネルベースのバイナリ分類は,データの数や寸法に関わらず,単一キュービットで行うことができることを示す。
論文 参考訳(メタデータ) (2021-04-16T14:51:00Z) - Efficient and robust certification of genuine multipartite entanglement
in noisy quantum error correction circuits [58.720142291102135]
実効多部絡み(GME)認証のための条件付き目撃手法を導入する。
線形な二分割数における絡み合いの検出は, 多数の測定値によって線形にスケールし, GMEの認証に十分であることを示す。
本手法は, 距離3の位相的カラーコードとフラグベースの耐故障バージョンにおける安定化作用素の雑音可読化に適用する。
論文 参考訳(メタデータ) (2020-10-06T18:00:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。