論文の概要: Facial Expression Recognition on a Quantum Computer
- arxiv url: http://arxiv.org/abs/2102.04823v1
- Date: Tue, 9 Feb 2021 13:48:00 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-10 15:07:40.217541
- Title: Facial Expression Recognition on a Quantum Computer
- Title(参考訳): 量子コンピュータにおける顔認識
- Authors: Riccardo Mengoni, Massimiliano Incudini, Alessandra Di Pierro
- Abstract要約: 量子機械学習手法を用いて表情認識の可能な解を示す。
適切に定義された量子状態の振幅に符号化されたグラフの隣接行列を操作する量子回路を定義する。
- 参考スコア(独自算出の注目度): 68.8204255655161
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We address the problem of facial expression recognition and show a possible
solution using a quantum machine learning approach. In order to define an
efficient classifier for a given dataset, our approach substantially exploits
quantum interference. By representing face expressions via graphs, we define a
classifier as a quantum circuit that manipulates the graphs adjacency matrices
encoded into the amplitudes of some appropriately defined quantum states. We
discuss the accuracy of the quantum classifier evaluated on the quantum
simulator available on the IBM Quantum Experience cloud platform, and compare
it with the accuracy of one of the best classical classifier.
- Abstract(参考訳): 本稿では,表情認識の課題に対処し,量子機械学習手法を用いて実現可能な解を示す。
与えられたデータセットの効率的な分類器を定義するために、量子干渉を効果的に活用する。
グラフを介して顔表現を表現することにより、適切に定義された量子状態の振幅に符号化されたグラフ隣接行列を操作する量子回路として分類器を定義する。
ibm quantum experience cloudプラットフォームで利用可能な量子シミュレータで評価された量子分類器の精度について検討し、最も優れた古典的分類器の一つの精度と比較する。
関連論文リスト
- Addressing the Readout Problem in Quantum Differential Equation Algorithms with Quantum Scientific Machine Learning [14.379311972506791]
正確な量子状態の読み出しは、トモグラフィーの複雑さによってボトルネックとなる。
量子微分方程式の出力を量子データとして扱い、低次元の出力を抽出できることを実証する。
この量子科学機械学習手法を用いて衝撃波の検出と乱流モデリングの解を分類する。
論文 参考訳(メタデータ) (2024-11-21T16:09:08Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - The curse of random quantum data [62.24825255497622]
量子データのランドスケープにおける量子機械学習の性能を定量化する。
量子機械学習におけるトレーニング効率と一般化能力は、量子ビットの増加に伴い指数関数的に抑制される。
この結果は量子カーネル法と量子ニューラルネットワークの広帯域限界の両方に適用できる。
論文 参考訳(メタデータ) (2024-08-19T12:18:07Z) - Supervised binary classification of small-scale digits images with a trapped-ion quantum processor [56.089799129458875]
量子プロセッサは、考慮された基本的な分類タスクを正しく解くことができることを示す。
量子プロセッサの能力が向上するにつれ、機械学習の有用なツールになり得る。
論文 参考訳(メタデータ) (2024-06-17T18:20:51Z) - MORE: Measurement and Correlation Based Variational Quantum Circuit for
Multi-classification [10.969833959443495]
MOREは、測定と相関に基づく変分量子多重分類器の略である。
我々はQiskit Pythonライブラリを使ってMOREを実装し、ノイズフリーとノイズの多い量子システムの両方で広範囲にわたる実験により評価する。
論文 参考訳(メタデータ) (2023-07-21T19:33:10Z) - Delegated variational quantum algorithms based on quantum homomorphic
encryption [69.50567607858659]
変分量子アルゴリズム(VQA)は、量子デバイス上で量子アドバンテージを達成するための最も有望な候補の1つである。
クライアントのプライベートデータは、そのような量子クラウドモデルで量子サーバにリークされる可能性がある。
量子サーバが暗号化データを計算するための新しい量子ホモモルフィック暗号(QHE)スキームが構築されている。
論文 参考訳(メタデータ) (2023-01-25T07:00:13Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - Quantum variational learning for entanglement witnessing [0.0]
この研究は量子アルゴリズムの潜在的な実装に焦点を当て、$n$ qubitsの単一レジスタ上で定義された量子状態を適切に分類することができる。
我々は「絡み合いの証人」という概念、すなわち、特定の特定の状態が絡み合うものとして識別できる期待値を持つ演算子を利用する。
我々は,量子ニューラルネットワーク(QNN)を用いて,絡み合いの目撃者の行動を再現する方法をうまく学習した。
論文 参考訳(メタデータ) (2022-05-20T20:14:28Z) - Variational Quantum Anomaly Detection: Unsupervised mapping of phase
diagrams on a physical quantum computer [0.0]
量子シミュレーションから量子データを解析するための教師なし量子機械学習アルゴリズムである変分量子異常検出を提案する。
このアルゴリズムは、事前の物理的知識を持たないシステムの位相図を抽出するために用いられる。
現在ではアクセスしやすいデバイスで使用でき、実際の量子コンピュータ上でアルゴリズムを実行することができる。
論文 参考訳(メタデータ) (2021-06-15T06:54:47Z) - Quantum ensemble of trained classifiers [2.048335092363436]
量子コンピュータは、利用可能な量子ビットの数に応じて指数的に大きな状態の集合を表現することができる。
量子機械学習は、機械学習アルゴリズムを強化する量子コンピューティングの可能性を探る。
論文 参考訳(メタデータ) (2020-07-18T01:01:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。