論文の概要: Neural Laplace for learning Stochastic Differential Equations
- arxiv url: http://arxiv.org/abs/2406.04964v1
- Date: Fri, 7 Jun 2024 14:29:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-10 13:41:57.388070
- Title: Neural Laplace for learning Stochastic Differential Equations
- Title(参考訳): 確率微分方程式学習のためのニューラルラプラス
- Authors: Adrien Carrel,
- Abstract要約: Neuralplaceは多種多様な微分方程式(DE)を学習するための統一的なフレームワークである
DEの異なるクラスに対して、このフレームワークは通常の微分方程式(ODE)のクラスを学習することを目的としたニューラルネットワークに依存する他のアプローチよりも優れている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural Laplace is a unified framework for learning diverse classes of differential equations (DE). For different classes of DE, this framework outperforms other approaches relying on neural networks that aim to learn classes of ordinary differential equations (ODE). However, many systems can't be modelled using ODEs. Stochastic differential equations (SDE) are the mathematical tool of choice when modelling spatiotemporal DE dynamics under the influence of randomness. In this work, we review the potential applications of Neural Laplace to learn diverse classes of SDE, both from a theoretical and a practical point of view.
- Abstract(参考訳): ニューラルラプラス(Neural Laplace)は、微分方程式(DE)を学習するための統一的なフレームワークである。
DEの異なるクラスに対して、このフレームワークは通常の微分方程式(ODE)のクラスを学習することを目的としたニューラルネットワークに依存する他のアプローチよりも優れている。
しかし、多くのシステムはODEを使ってモデル化できません。
確率微分方程式(SDE、英: Stochastic differential equation)は、確率性の影響下で時空間DEM力学をモデル化する際の数学的ツールである。
本稿では,SDEの多様なクラスを理論的・実用的に学習するためのNeural Laplaceの応用の可能性について概説する。
関連論文リスト
- Neural Fractional Differential Equations [2.812395851874055]
FDE(Fractional Differential Equations)は、科学や工学において複雑なシステムをモデル化するための重要なツールである。
我々は、FDEをデータのダイナミックスに調整する新しいディープニューラルネットワークアーキテクチャであるNeural FDEを提案する。
論文 参考訳(メタデータ) (2024-03-05T07:45:29Z) - Experimental study of Neural ODE training with adaptive solver for
dynamical systems modeling [72.84259710412293]
アダプティブと呼ばれるいくつかのODEソルバは、目の前の問題の複雑さに応じて評価戦略を適用することができる。
本稿では,動的システムモデリングのためのブラックボックスとして適応型ソルバをシームレスに利用できない理由を示すための簡単な実験について述べる。
論文 参考訳(メタデータ) (2022-11-13T17:48:04Z) - On Numerical Integration in Neural Ordinary Differential Equations [0.0]
本稿では,数値積分がニューラルネットワークモデルの学習に与える影響を明らかにするために,逆修正微分方程式(IMDE)を提案する。
ニューラルODEモデルのトレーニングは、真のODEではなく、IMDEの近似を実際に返すことが示されている。
論文 参考訳(メタデータ) (2022-06-15T07:39:01Z) - Neural Laplace: Learning diverse classes of differential equations in
the Laplace domain [86.52703093858631]
本稿では,これらすべてを含む多種多様な微分方程式(DE)を学習するための統一的な枠組みを提案する。
時間領域の力学をモデル化する代わりに、ラプラス領域でモデル化する。
The experiment, Neural Laplace shows excellent performance in modelling and extrapolating the trajectories of various class of DEs。
論文 参考訳(メタデータ) (2022-06-10T02:14:59Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
時間依存偏微分方程式を解くための物理インフォームド・フレームワークを提案する。
我々のモデルは離散コサイン変換を用いて空間的および反復的なニューラルネットワークを符号化する。
ナヴィエ・ストークス方程式に対するテイラー・グリーン渦解の実験結果を示す。
論文 参考訳(メタデータ) (2022-02-24T20:46:52Z) - On Neural Differential Equations [13.503274710499971]
特に、ニューラル微分方程式(NDE)は、ニューラルネットワークと微分方程式が同じコインの両側であることを示す。
NDEは生成問題、動的システム、時系列を扱うのに適している。
NDEは高容量関数近似、モデル空間への強い先行性、不規則なデータを扱う能力、メモリ効率、そして両サイドで利用可能な豊富な理論を提供する。
論文 参考訳(メタデータ) (2022-02-04T23:32:29Z) - Continuous Convolutional Neural Networks: Coupled Neural PDE and ODE [1.1897857181479061]
本研究では、物理システムの隠れた力学を学習できる畳み込みニューラルネットワーク(CNN)の変種を提案する。
画像や時系列などの物理系を複数の層からなるシステムとして考えるのではなく、微分方程式(DE)の形でシステムをモデル化することができる。
論文 参考訳(メタデータ) (2021-10-30T21:45:00Z) - Meta-Solver for Neural Ordinary Differential Equations [77.8918415523446]
本研究では,ソルバ空間の変動がニューラルODEの性能を向上する方法について検討する。
解法パラメータ化の正しい選択は, 敵の攻撃に対するロバスト性の観点から, 神経odesモデルに大きな影響を与える可能性がある。
論文 参考訳(メタデータ) (2021-03-15T17:26:34Z) - Fourier Neural Operator for Parametric Partial Differential Equations [57.90284928158383]
積分カーネルを直接フーリエ空間でパラメータ化することで、新しいニューラル演算子を定式化する。
バーガースの方程式、ダーシー流、ナビエ・ストークス方程式の実験を行う。
従来のPDEソルバに比べて最大3桁高速である。
論文 参考訳(メタデータ) (2020-10-18T00:34:21Z) - Stochasticity in Neural ODEs: An Empirical Study [68.8204255655161]
ニューラルネットワークの正規化(ドロップアウトなど)は、より高度な一般化を可能にするディープラーニングの広範な技術である。
トレーニング中のデータ拡張は、同じモデルの決定論的およびバージョンの両方のパフォーマンスを向上させることを示す。
しかし、データ拡張によって得られる改善により、経験的正規化の利得は完全に排除され、ニューラルODEとニューラルSDEの性能は無視される。
論文 参考訳(メタデータ) (2020-02-22T22:12:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。