Development and Validation of a Deep-Learning Model for Differential Treatment Benefit Prediction for Adults with Major Depressive Disorder Deployed in the Artificial Intelligence in Depression Medication Enhancement (AIDME) Study
- URL: http://arxiv.org/abs/2406.04993v1
- Date: Fri, 7 Jun 2024 15:04:59 GMT
- Title: Development and Validation of a Deep-Learning Model for Differential Treatment Benefit Prediction for Adults with Major Depressive Disorder Deployed in the Artificial Intelligence in Depression Medication Enhancement (AIDME) Study
- Authors: David Benrimoh, Caitrin Armstrong, Joseph Mehltretter, Robert Fratila, Kelly Perlman, Sonia Israel, Adam Kapelner, Sagar V. Parikh, Jordan F. Karp, Katherine Heller, Gustavo Turecki,
- Abstract summary: The pharmacological treatment of Major Depressive Disorder (MDD) relies on a trial-and-error approach.
We introduce an artificial intelligence (AI) model aiming to personalize treatment outcomes.
- Score: 0.622895724042048
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: INTRODUCTION: The pharmacological treatment of Major Depressive Disorder (MDD) relies on a trial-and-error approach. We introduce an artificial intelligence (AI) model aiming to personalize treatment and improve outcomes, which was deployed in the Artificial Intelligence in Depression Medication Enhancement (AIDME) Study. OBJECTIVES: 1) Develop a model capable of predicting probabilities of remission across multiple pharmacological treatments for adults with at least moderate major depression. 2) Validate model predictions and examine them for amplification of harmful biases. METHODS: Data from previous clinical trials of antidepressant medications were standardized into a common framework and included 9,042 adults with moderate to severe major depression. Feature selection retained 25 clinical and demographic variables. Using Bayesian optimization, a deep learning model was trained on the training set, refined using the validation set, and tested once on the held-out test set. RESULTS: In the evaluation on the held-out test set, the model demonstrated achieved an AUC of 0.65. The model outperformed a null model on the test set (p = 0.01). The model demonstrated clinical utility, achieving an absolute improvement in population remission rate in hypothetical and actual improvement testing. While the model did identify one drug (escitalopram) as generally outperforming the other drugs (consistent with the input data), there was otherwise significant variation in drug rankings. On bias testing, the model did not amplify potentially harmful biases. CONCLUSIONS: We demonstrate the first model capable of predicting outcomes for 10 different treatment options for patients with MDD, intended to be used at or near the start of treatment to personalize treatment. The model was put into clinical practice during the AIDME randomized controlled trial whose results are reported separately.
Related papers
- Personalized Prediction Models for Changes in Knee Pain among Patients with Osteoarthritis Participating in Supervised Exercise and Education [0.0]
Knee osteoarthritis (OA) is a widespread chronic condition that impairs mobility and diminishes quality of life.
Despite the proven benefits of exercise therapy and patient education in managing the OA symptoms pain and functional limitations, these strategies are often underutilized.
To improve predictions, new variables beyond those in the GLA:D are required.
arXiv Detail & Related papers (2024-10-16T14:15:01Z) - Can Machine Learning Assist in Diagnosis of Primary Immune Thrombocytopenia? A feasibility study [12.4123972735841]
Primary Immune thrombocytopenia (ITP) is a rare autoimmune disease characterised by immune-mediated destruction of peripheral blood platelets in patients.
There is no established test to confirm the disease and no biomarker with which one can predict the response to treatment and outcome.
We conduct a feasibility study to check if machine learning can be applied effectively for diagnosis of ITP using routine blood tests and demographic data in a non-acute outpatient setting.
arXiv Detail & Related papers (2024-05-31T01:04:46Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
Recent genome-wide association studies (GWAS) have uncovered the genetic basis of complex traits, but show an under-representation of non-European descent individuals.
Here, we assess whether we can improve disease prediction across diverse ancestries using multiomic data.
arXiv Detail & Related papers (2024-04-26T16:39:50Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
Clinical trials are critical for drug development but often suffer from expensive and inefficient patient recruitment.
In recent years, machine learning models have been proposed for speeding up patient recruitment via automatically matching patients with clinical trials.
We introduce a dynamic tree-based memory network model named TREEMENT to provide accurate and interpretable patient trial matching.
arXiv Detail & Related papers (2023-07-19T12:35:09Z) - SPOT: Sequential Predictive Modeling of Clinical Trial Outcome with
Meta-Learning [67.8195828626489]
Clinical trials are essential to drug development but time-consuming, costly, and prone to failure.
We propose Sequential Predictive mOdeling of clinical Trial outcome (SPOT) that first identifies trial topics to cluster the multi-sourced trial data into relevant trial topics.
With the consideration of each trial sequence as a task, it uses a meta-learning strategy to achieve a point where the model can rapidly adapt to new tasks with minimal updates.
arXiv Detail & Related papers (2023-04-07T23:04:27Z) - Mixed Effects Random Forests for Personalised Predictions of Clinical
Depression Severity [2.6572038957677657]
This work demonstrates how mixed effects random forests enable accurate predictions of depression severity using multimodal physiological and digital activity data.
We show that mixed effects random forests outperform standard random forests and personal average baselines when predicting clinical Depression Rating Scale scores (S_17)
We suggest that this improved performance results from the ability of the mixed effects random forest to personalise model parameters to individuals in the dataset.
arXiv Detail & Related papers (2023-01-24T04:50:55Z) - A comparison of approaches to improve worst-case predictive model
performance over patient subpopulations [14.175321968797252]
Predictive models for clinical outcomes that are accurate on average in a patient population may underperform drastically for some subpopulations.
We identify approaches for model development and selection that consistently improve disaggregated and worst-case performance over subpopulations.
We find that, with relatively few exceptions, no approach performs better, for each patient subpopulation examined, than standard learning procedures.
arXiv Detail & Related papers (2021-08-27T13:10:00Z) - Improvement of a Prediction Model for Heart Failure Survival through
Explainable Artificial Intelligence [0.0]
This work presents an explainability analysis and evaluation of a prediction model for heart failure survival.
The model employs a data workflow pipeline able to select the best ensemble tree algorithm as well as the best feature selection technique.
The paper's main contribution is an explainability-driven approach to select the best prediction model for HF survival based on an accuracy-explainability balance.
arXiv Detail & Related papers (2021-08-20T09:03:26Z) - Bayesian prognostic covariate adjustment [59.75318183140857]
Historical data about disease outcomes can be integrated into the analysis of clinical trials in many ways.
We build on existing literature that uses prognostic scores from a predictive model to increase the efficiency of treatment effect estimates.
arXiv Detail & Related papers (2020-12-24T05:19:03Z) - Increasing the efficiency of randomized trial estimates via linear
adjustment for a prognostic score [59.75318183140857]
Estimating causal effects from randomized experiments is central to clinical research.
Most methods for historical borrowing achieve reductions in variance by sacrificing strict type-I error rate control.
arXiv Detail & Related papers (2020-12-17T21:10:10Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.