論文の概要: YouTube SFV+HDR Quality Dataset
- arxiv url: http://arxiv.org/abs/2406.05305v1
- Date: Sat, 8 Jun 2024 00:15:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-11 20:34:04.650070
- Title: YouTube SFV+HDR Quality Dataset
- Title(参考訳): YouTube SFV+HDR品質データセット
- Authors: Yilin Wang, Joong Gon Yim, Neil Birkbeck, Balu Adsumilli,
- Abstract要約: 私たちは、信頼性の高い主観的品質スコアを持つ最初の大規模なSFV+データセットを作成し、10の人気のあるコンテンツカテゴリをカバーしました。
我々は,ショートフォームSDRおよびHDRビデオの主観的品質スコアを包括的に分析し,最先端の品質指標の信頼性と潜在的な改善について検討した。
- 参考スコア(独自算出の注目度): 25.130330616979677
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The popularity of Short form videos (SFV) has grown dramatically in the past few years, and has become a phenomenal video category with billions of viewers. Meanwhile, High Dynamic Range (HDR) as an advanced feature also becomes more and more popular on video sharing platforms. As a hot topic with huge impact, SFV and HDR bring new questions to video quality research: 1) is SFV+HDR quality assessment significantly different from traditional User Generated Content (UGC) quality assessment? 2) do objective quality metrics designed for traditional UGC still work well for SFV+HDR? To answer the above questions, we created the first large scale SFV+HDR dataset with reliable subjective quality scores, covering 10 popular content categories. Further, we also introduce a general sampling framework to maximize the representativeness of the dataset. We provided a comprehensive analysis of subjective quality scores for Short form SDR and HDR videos, and discuss the reliability of state-of-the-art UGC quality metrics and potential improvements.
- Abstract(参考訳): ショートフォームビデオ(SFV)の人気はここ数年で劇的に増加し、何十億もの視聴者を抱える驚くべきビデオカテゴリーとなっている。
一方、高度な機能としてのHigh Dynamic Range(HDR)も、ビデオ共有プラットフォームでますます人気を博している。
SFVとHDRは、大きなインパクトを持つホットトピックとして、ビデオ品質の研究に新たな疑問をもたらす。
1) SFV+HDR品質評価は従来のユーザ生成コンテンツ(UGC)品質評価と大きく異なるか?
2) 従来のUGC用に設計された客観的な品質指標は,SFV+HDRでも有効か?
以上の質問に答えるために、我々は、信頼性の高い主観的品質スコアを持つ最初の大規模SFV+HDRデータセットを作成し、10の人気のあるコンテンツカテゴリをカバーした。
さらに、データセットの表現性を最大化するための一般的なサンプリングフレームワークも導入する。
我々は,ショートフォームSDRおよびHDRビデオの主観的品質スコアを包括的に分析し,最先端のUGC品質指標の信頼性と潜在的な改善について検討した。
関連論文リスト
- EgoCVR: An Egocentric Benchmark for Fine-Grained Composed Video Retrieval [52.375143786641196]
EgoCVRは、きめ細かいComposted Video Retrievalの評価ベンチマークである。
EgoCVRは2,295のクエリで構成され、高品質な時間的ビデオ理解に特化している。
論文 参考訳(メタデータ) (2024-07-23T17:19:23Z) - AIS 2024 Challenge on Video Quality Assessment of User-Generated Content: Methods and Results [140.47245070508353]
本稿では,ユーザ生成コンテンツ(UGC)に着目したAIS 2024ビデオ品質アセスメント(VQA)チャレンジについてレビューする。
この課題の目的は、ビデオの知覚品質を推定できるディープラーニングベースの手法を収集することである。
YouTubeデータセットから生成されたビデオには、さまざまなコンテンツ(スポーツ、ゲーム、歌詞、アニメなど)、品質、解像度が含まれている。
論文 参考訳(メタデータ) (2024-04-24T21:02:14Z) - Subjective Quality Assessment of Compressed Tone-Mapped High Dynamic Range Videos [35.19716951217485]
ストリーミングHDRビデオの視覚的品質に及ぼすトネマッピング演算子の影響を解析する。
我々は、圧縮トーンマップ付きHDRビデオの大規模主観的オープンソースデータベースを構築した。
論文 参考訳(メタデータ) (2024-03-22T09:38:16Z) - A FUNQUE Approach to the Quality Assessment of Compressed HDR Videos [36.26141980831573]
最先端のSOTA(State-of-art)アプローチでは、VMAFのような既製のビデオ品質モデルが強化され、非線形変換ビデオフレームで計算される。
ここでは,FUNQUE+というビデオ品質予測モデルの効率的なクラスが,より少ない計算コストで高いHDR映像品質予測精度を実現することを示す。
論文 参考訳(メタデータ) (2023-12-13T21:24:00Z) - HIDRO-VQA: High Dynamic Range Oracle for Video Quality Assessment [36.1179702443845]
HIDRO-VQAは,ハイダイナミックレンジ(ハイダイナミックレンジ)ビデオの正確な品質評価を提供するために設計された,NRビデオ品質評価モデルである。
この結果から, 自己教師型ニューラルネットワークは, 最先端の性能を達成するために, 自己教師型設定でさらに微調整できることがわかった。
我々のアルゴリズムはFull Reference VQA設定に拡張することができ、また最先端の性能を達成することができる。
論文 参考訳(メタデータ) (2023-11-18T12:33:19Z) - HDR or SDR? A Subjective and Objective Study of Scaled and Compressed
Videos [36.33823452846196]
我々は,高ダイナミックレンジ(SDR)ビデオと標準ダイナミックレンジ(SDR)ビデオの人間の知覚品質判定を大規模に検討した。
HDRとSDRの主観的嗜好は、ディスプレイデバイス、解像度のスケーリングと解像度に大きく依存することがわかった。
論文 参考訳(メタデータ) (2023-04-25T21:43:37Z) - Subjective Assessment of High Dynamic Range Videos Under Different
Ambient Conditions [38.504568225201915]
本稿では,HDRビデオの大規模主観的研究について紹介する。
圧縮やエイリアスなどの歪みがHDRビデオの品質に及ぼす影響について検討する。
この調査には計66人の被験者が参加し、2万人以上の世論調査が集められた。
論文 参考訳(メタデータ) (2022-09-20T21:25:50Z) - Subjective and Objective Analysis of Streamed Gaming Videos [60.32100758447269]
ゲームビデオにおける主観的および客観的ビデオ品質評価(VQA)モデルについて検討する。
LIVE-YouTube Gaming Video Quality (LIVE-YT-Gaming) と呼ばれる新しいゲームビデオリソースを作成しました。
このデータについて主観的人間調査を行い,61名の被験者が記録した品質評価18,600名を得た。
論文 参考訳(メタデータ) (2022-03-24T03:02:57Z) - High Frame Rate Video Quality Assessment using VMAF and Entropic
Differences [50.265638572116984]
ライブでハイアクションなコンテンツによるストリーミングビデオの人気は、ハイフレームレート(HFR)ビデオへの関心を高めている。
本稿では,比較対象の動画がフレームレートと圧縮係数が異なる場合に,フレームレートに依存するビデオ品質評価(VQA)の問題に対処する。
提案する融合フレームワークは,フレームレートに依存した映像品質を予測するために,より効率的な特徴をもたらすことを示す。
論文 参考訳(メタデータ) (2021-09-27T04:08:12Z) - AIM 2020 Challenge on Video Extreme Super-Resolution: Methods and
Results [96.74919503142014]
本稿では,ECCV 2020におけるAIM 2020ワークショップに関連する超高解像度映像についてレビューする。
トラック1は、PSNRとSSIMによって基底真理への忠実度を測定するような要求されたタスクの最先端度を測定するために設定される。
トラック2は、人間の知覚に応じてランク付けされた視覚的に満足な結果を生成することを目的としており、ユーザスタディによって評価されている。
論文 参考訳(メタデータ) (2020-09-14T09:36:25Z) - Subjective and Objective Quality Assessment of High Frame Rate Videos [60.970191379802095]
高フレームレート(HFR)ビデオは、スポーツなどのライブ、高アクションのストリーミングコンテンツが驚くほど人気を博し、ますます一般的になっている。
ライブYT-HFRデータセットは、6つの異なるフレームレートを持つ480のビデオで構成され、16の多様なコンテンツから得られる。
ビデオの主観的ラベルを得るために,85人の被験者のプールから得られた品質評価を19,000件取得した。
論文 参考訳(メタデータ) (2020-07-22T19:11:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。