論文の概要: Spiking Neural Networks with Consistent Mapping Relations Allow High-Accuracy Inference
- arxiv url: http://arxiv.org/abs/2406.05371v1
- Date: Sat, 8 Jun 2024 06:40:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-11 20:04:51.635441
- Title: Spiking Neural Networks with Consistent Mapping Relations Allow High-Accuracy Inference
- Title(参考訳): 高精度推論が可能な一貫したマッピング関係を持つニューラルネットワークのスパイキング
- Authors: Yang Li, Xiang He, Qingqun Kong, Yi Zeng,
- Abstract要約: スパイクベースのニューロモルフィックハードウェアは、低エネルギー消費と効率的な推論において大きな可能性を証明している。
ディープスパイクニューラルネットワークの直接トレーニングは困難であり、変換ベースの手法では未解決の変換エラーのため、かなりの遅延が必要になる。
- 参考スコア(独自算出の注目度): 9.667807887916132
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spike-based neuromorphic hardware has demonstrated substantial potential in low energy consumption and efficient inference. However, the direct training of deep spiking neural networks is challenging, and conversion-based methods still require substantial time delay owing to unresolved conversion errors. We determine that the primary source of the conversion errors stems from the inconsistency between the mapping relationship of traditional activation functions and the input-output dynamics of spike neurons. To counter this, we introduce the Consistent ANN-SNN Conversion (CASC) framework. It includes the Consistent IF (CIF) neuron model, specifically contrived to minimize the influence of the stable point's upper bound, and the wake-sleep conversion (WSC) method, synergistically ensuring the uniformity of neuron behavior. This method theoretically achieves a loss-free conversion, markedly diminishing time delays and improving inference performance in extensive classification and object detection tasks. Our approach offers a viable pathway toward more efficient and effective neuromorphic systems.
- Abstract(参考訳): スパイクベースのニューロモルフィックハードウェアは、低エネルギー消費と効率的な推論において大きな可能性を証明している。
しかし、ディープスパイクニューラルネットワークの直接トレーニングは困難であり、変換ベースの手法では未解決の変換エラーのため、かなり時間を要する。
変換誤差の主な原因は、従来の活性化関数のマッピング関係とスパイクニューロンのインプット・アウトプット・ダイナミクスとの整合性にあると判断する。
これに対応するために、Consistent ANN-SNN Conversion (CASC)フレームワークを紹介する。
具体的には、安定点の上界の影響を最小限に抑えるために考案されたConsistent IF(CIF)ニューロンモデルと、ニューロンの挙動の均一性を相乗的に保証するウェイク-スリープ変換(WSC)手法を含む。
この方法は理論的には損失のない変換を実現し、時間遅延を著しく低減し、広範囲の分類およびオブジェクト検出タスクにおける推論性能を向上させる。
我々のアプローチはより効率的で効果的なニューロモルフィックシステムへの有効な経路を提供する。
関連論文リスト
- Randomized Forward Mode Gradient for Spiking Neural Networks in Scientific Machine Learning [4.178826560825283]
スパイキングニューラルネットワーク(SNN)は、ディープニューラルネットワークの階層的学習能力とスパイクベースの計算のエネルギー効率を組み合わせた、機械学習における有望なアプローチである。
SNNの伝統的なエンドツーエンドトレーニングは、しばしばバックプロパゲーションに基づいており、重み更新はチェーンルールによって計算された勾配から導かれる。
この手法は, 生体適合性に限界があり, ニューロモルフィックハードウェアの非効率性のため, 課題に遭遇する。
本研究では,SNNの代替トレーニング手法を導入する。後方伝搬の代わりに,前方モード内での重量摂動手法を活用する。
論文 参考訳(メタデータ) (2024-11-11T15:20:54Z) - Advancing Spatio-Temporal Processing in Spiking Neural Networks through Adaptation [6.233189707488025]
本稿では、適応LIFニューロンとそのネットワークの動的、計算的、および学習特性について分析する。
適応LIFニューロンのネットワークの優越性は、複雑な時系列の予測と生成にまで及んでいることを示す。
論文 参考訳(メタデータ) (2024-08-14T12:49:58Z) - Understanding the Convergence in Balanced Resonate-and-Fire Neurons [1.4186974630564675]
Resonate-and-Fire(RF)ニューロンは、スパイキングニューラルネットワーク(SNN)におけるインテグレーターニューロンの興味深い補体モデルである
最近提案されたリゾネート・アンド・ファイア(BRF)ニューロンは、タスク性能、スパイク、パラメータ効率において重要な方法論的進歩を示した。
本稿は、これらの収束優位性の出現の経緯と理由について、さらなる直感を提供することを目的としている。
論文 参考訳(メタデータ) (2024-06-01T10:04:55Z) - TC-LIF: A Two-Compartment Spiking Neuron Model for Long-Term Sequential
Modelling [54.97005925277638]
潜在的な可能性や危険に関連する感覚的手がかりの同定は、長期間の遅延によって有用な手がかりを分離する無関係な事象によってしばしば複雑になる。
SNN(State-of-the-art spiking Neural Network)は、遠方のキュー間の長期的な時間的依存関係を確立する上で、依然として困難な課題である。
そこで本研究では,T-LIFとよばれる,生物学的にインスパイアされたTwo-compartment Leaky Integrate- and-Fireのスパイキングニューロンモデルを提案する。
論文 参考訳(メタデータ) (2023-08-25T08:54:41Z) - Long Short-term Memory with Two-Compartment Spiking Neuron [64.02161577259426]
LSTM-LIFとよばれる,生物学的にインスパイアされたLong Short-Term Memory Leaky Integrate-and-Fireのスパイキングニューロンモデルを提案する。
実験結果は,時間的分類タスクの多種多様な範囲において,優れた時間的分類能力,迅速な訓練収束,ネットワークの一般化性,LSTM-LIFモデルの高エネルギー化を実証した。
したがって、この研究は、新しいニューロモルフィック・コンピューティング・マシンにおいて、困難な時間的処理タスクを解決するための、無数の機会を開放する。
論文 参考訳(メタデータ) (2023-07-14T08:51:03Z) - MSAT: Biologically Inspired Multi-Stage Adaptive Threshold for
Conversion of Spiking Neural Networks [11.392893261073594]
スパイキングニューラルネットワーク(SNN)はそのスパイク間隔のために低消費電力で推測できる。
ANN-SNN変換は、よく訓練されたニューラルネットワーク(ANN)を変換することでディープSNNを実現する効率的な方法である
既存の方法は、ニューロンがより深い層にスパイクを素早く届けるのを防ぐ変換に一定の閾値を使用するのが一般的である。
論文 参考訳(メタデータ) (2023-03-23T07:18:08Z) - Modeling Associative Plasticity between Synapses to Enhance Learning of
Spiking Neural Networks [4.736525128377909]
Spiking Neural Networks(SNN)は、ニューラルネットワークの第3世代であり、ニューロモルフィックハードウェア上でエネルギー効率の高い実装を可能にする。
本稿では,シナプス間の結合可塑性をモデル化し,頑健で効果的な学習機構を提案する。
本手法は静的および最先端のニューロモルフィックデータセット上での優れた性能を実現する。
論文 参考訳(メタデータ) (2022-07-24T06:12:23Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
スパイキングニューラルネットワーク(英: Spiking Neural Network、SNN)は、ニューロモルフィックハードウェア上でエネルギー効率の高い実装を可能にする脳にインスパイアされたモデルである。
既存のほとんどの手法は、人工ニューラルネットワークのバックプロパゲーションフレームワークとフィードフォワードアーキテクチャを模倣している。
本稿では,フォワード計算の正逆性に依存しない新しいトレーニング手法を提案する。
論文 参考訳(メタデータ) (2021-09-29T07:46:54Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
本稿では,ニューラル平均場(NMF)ダイナミクスを用いた新しい学習フレームワークを提案する。
我々のフレームワークは拡散ネットワークの構造とノード感染確率の進化を同時に学習することができる。
論文 参考訳(メタデータ) (2021-06-03T00:02:05Z) - Non-Singular Adversarial Robustness of Neural Networks [58.731070632586594]
小さな入力摂動に対する過敏性のため、アドリヤルロバスト性はニューラルネットワークにとって新たな課題となっている。
我々は,データ入力とモデル重みの共振レンズを用いて,ニューラルネットワークの非特異な対角性の概念を定式化する。
論文 参考訳(メタデータ) (2021-02-23T20:59:30Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
本稿では,ネットワーク上の拡散の推論と推定のための新しい学習フレームワークを提案する。
本研究の枠組みは, ノード感染確率の正確な進化を得るために, モリ・ズワンジッヒ形式から導かれる。
我々のアプローチは、基礎となる拡散ネットワークモデルのバリエーションに対して多用途で堅牢である。
論文 参考訳(メタデータ) (2020-06-16T18:45:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。