VillagerAgent: A Graph-Based Multi-Agent Framework for Coordinating Complex Task Dependencies in Minecraft
- URL: http://arxiv.org/abs/2406.05720v1
- Date: Sun, 9 Jun 2024 10:21:47 GMT
- Title: VillagerAgent: A Graph-Based Multi-Agent Framework for Coordinating Complex Task Dependencies in Minecraft
- Authors: Yubo Dong, Xukun Zhu, Zhengzhe Pan, Linchao Zhu, Yi Yang,
- Abstract summary: We introduce a Directed Acyclic Graph Multi-Agent Framework VillagerAgent to resolve complex inter-agent dependencies.
Our empirical evaluation on VillagerBench demonstrates that VillagerAgent outperforms the existing AgentVerse model.
- Score: 46.19145184507293
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we aim to evaluate multi-agent systems against complex dependencies, including spatial, causal, and temporal constraints. First, we construct a new benchmark, named VillagerBench, within the Minecraft environment.VillagerBench comprises diverse tasks crafted to test various aspects of multi-agent collaboration, from workload distribution to dynamic adaptation and synchronized task execution. Second, we introduce a Directed Acyclic Graph Multi-Agent Framework VillagerAgent to resolve complex inter-agent dependencies and enhance collaborative efficiency. This solution incorporates a task decomposer that creates a directed acyclic graph (DAG) for structured task management, an agent controller for task distribution, and a state manager for tracking environmental and agent data. Our empirical evaluation on VillagerBench demonstrates that VillagerAgent outperforms the existing AgentVerse model, reducing hallucinations and improving task decomposition efficacy. The results underscore VillagerAgent's potential in advancing multi-agent collaboration, offering a scalable and generalizable solution in dynamic environments. The source code is open-source on GitHub (https://github.com/cnsdqd-dyb/VillagerAgent).
Related papers
- GenAgent: Build Collaborative AI Systems with Automated Workflow Generation -- Case Studies on ComfyUI [64.57616646552869]
This paper explores collaborative AI systems that use to enhance performance to integrate models, data sources, and pipelines to solve complex and diverse tasks.
We introduce GenAgent, an LLM-based framework that automatically generates complex, offering greater flexibility and scalability compared to monolithic models.
The results demonstrate that GenAgent outperforms baseline approaches in both run-level and task-level evaluations.
arXiv Detail & Related papers (2024-09-02T17:44:10Z) - AgentGym: Evolving Large Language Model-based Agents across Diverse Environments [116.97648507802926]
Large language models (LLMs) are considered a promising foundation to build such agents.
We take the first step towards building generally-capable LLM-based agents with self-evolution ability.
We propose AgentGym, a new framework featuring a variety of environments and tasks for broad, real-time, uni-format, and concurrent agent exploration.
arXiv Detail & Related papers (2024-06-06T15:15:41Z) - TDAG: A Multi-Agent Framework based on Dynamic Task Decomposition and
Agent Generation [45.028795422801764]
We propose a multi-agent framework based on dynamic Task Decomposition and Agent Generation (TDAG)
This framework dynamically decomposes complex tasks into smaller subtasks and assigns each to a specifically generated subagent.
ItineraryBench is designed to assess agents' abilities in memory, planning, and tool usage across tasks of varying complexity.
arXiv Detail & Related papers (2024-02-15T18:27:37Z) - CCA: Collaborative Competitive Agents for Image Editing [59.54347952062684]
This paper presents a novel generative model, Collaborative Competitive Agents (CCA)
It leverages the capabilities of multiple Large Language Models (LLMs) based agents to execute complex tasks.
The paper's main contributions include the introduction of a multi-agent-based generative model with controllable intermediate steps and iterative optimization.
arXiv Detail & Related papers (2024-01-23T11:46:28Z) - Agents meet OKR: An Object and Key Results Driven Agent System with
Hierarchical Self-Collaboration and Self-Evaluation [25.308341461293857]
OKR-Agent is designed to enhance the capabilities of Large Language Models (LLMs) in task-solving.
Our framework includes two novel modules: hierarchical Objects and Key Results generation and multi-level evaluation.
arXiv Detail & Related papers (2023-11-28T06:16:30Z) - Dynamic LLM-Agent Network: An LLM-agent Collaboration Framework with
Agent Team Optimization [59.39113350538332]
Large language model (LLM) agents have been shown effective on a wide range of tasks, and by ensembling multiple LLM agents, their performances could be further improved.
Existing approaches employ a fixed set of agents to interact with each other in a static architecture.
We build a framework named Dynamic LLM-Agent Network ($textbfDyLAN$) for LLM-agent collaboration on complicated tasks like reasoning and code generation.
arXiv Detail & Related papers (2023-10-03T16:05:48Z) - AutoAgents: A Framework for Automatic Agent Generation [27.74332323317923]
AutoAgents is an innovative framework that adaptively generates and coordinates multiple specialized agents to build an AI team according to different tasks.
Our experiments on various benchmarks demonstrate that AutoAgents generates more coherent and accurate solutions than the existing multi-agent methods.
arXiv Detail & Related papers (2023-09-29T14:46:30Z) - AgentVerse: Facilitating Multi-Agent Collaboration and Exploring
Emergent Behaviors [93.38830440346783]
We propose a multi-agent framework framework that can collaboratively adjust its composition as a greater-than-the-sum-of-its-parts system.
Our experiments demonstrate that framework framework can effectively deploy multi-agent groups that outperform a single agent.
In view of these behaviors, we discuss some possible strategies to leverage positive ones and mitigate negative ones for improving the collaborative potential of multi-agent groups.
arXiv Detail & Related papers (2023-08-21T16:47:11Z) - Heterogeneous Embodied Multi-Agent Collaboration [21.364827833498254]
Heterogeneous multi-agent tasks are common in real-world scenarios.
We propose the heterogeneous multi-agent tidying-up task, in which multiple heterogeneous agents collaborate to detect misplaced objects and place them in reasonable locations.
We propose the hierarchical decision model based on misplaced object detection, reasonable receptacle prediction, as well as the handshake-based group communication mechanism.
arXiv Detail & Related papers (2023-07-26T04:33:05Z) - MACRPO: Multi-Agent Cooperative Recurrent Policy Optimization [17.825845543579195]
We propose a new multi-agent actor-critic method called textitMulti-Agent Cooperative Recurrent Proximal Policy Optimization (MACRPO)
We use a recurrent layer in critic's network architecture and propose a new framework to use a meta-trajectory to train the recurrent layer.
We evaluate our algorithm on three challenging multi-agent environments with continuous and discrete action spaces.
arXiv Detail & Related papers (2021-09-02T12:43:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.