TDAG: A Multi-Agent Framework based on Dynamic Task Decomposition and
Agent Generation
- URL: http://arxiv.org/abs/2402.10178v1
- Date: Thu, 15 Feb 2024 18:27:37 GMT
- Title: TDAG: A Multi-Agent Framework based on Dynamic Task Decomposition and
Agent Generation
- Authors: Yaoxiang Wang, Zhiyong Wu, Junfeng Yao, Jinsong Su
- Abstract summary: We propose a multi-agent framework based on dynamic Task Decomposition and Agent Generation (TDAG)
This framework dynamically decomposes complex tasks into smaller subtasks and assigns each to a specifically generated subagent.
ItineraryBench is designed to assess agents' abilities in memory, planning, and tool usage across tasks of varying complexity.
- Score: 45.028795422801764
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The emergence of Large Language Models (LLMs) like ChatGPT has inspired the
development of LLM-based agents capable of addressing complex, real-world
tasks. However, these agents often struggle during task execution due to
methodological constraints, such as error propagation and limited adaptability.
To address this issue, we propose a multi-agent framework based on dynamic Task
Decomposition and Agent Generation (TDAG). This framework dynamically
decomposes complex tasks into smaller subtasks and assigns each to a
specifically generated subagent, thereby enhancing adaptability in diverse and
unpredictable real-world tasks. Simultaneously, existing benchmarks often lack
the granularity needed to evaluate incremental progress in complex, multi-step
tasks. In response, we introduce ItineraryBench in the context of travel
planning, featuring interconnected, progressively complex tasks with a
fine-grained evaluation system. ItineraryBench is designed to assess agents'
abilities in memory, planning, and tool usage across tasks of varying
complexity. Our experimental results reveal that TDAG significantly outperforms
established baselines, showcasing its superior adaptability and context
awareness in complex task scenarios.
Related papers
- Guiding Multi-agent Multi-task Reinforcement Learning by a Hierarchical Framework with Logical Reward Shaping [16.5526277899717]
This study aims to design a multi-agent cooperative algorithm with logic reward shaping.
Experiments have been conducted on various types of tasks in the Minecraft-like environment.
arXiv Detail & Related papers (2024-11-02T09:03:23Z) - Textualized Agent-Style Reasoning for Complex Tasks by Multiple Round LLM Generation [49.27250832754313]
We present AgentCOT, a llm-based autonomous agent framework.
At each step, AgentCOT selects an action and executes it to yield an intermediate result with supporting evidence.
We introduce two new strategies to enhance the performance of AgentCOT.
arXiv Detail & Related papers (2024-09-19T02:20:06Z) - Meta-Task Planning for Language Agents [13.550774629515843]
Large language model-based agents (LLM agents) have emerged as a promising paradigm for achieving artificial general intelligence (AGI)
This paper introduces Meta-Task Planning (MTP), a zero-shot methodology for collaborative LLM-based multi-agent systems.
MTP achieved an average $sim40%$ success rate on TravelPlanner, significantly higher than the state-of-the-art (SOTA) baseline.
arXiv Detail & Related papers (2024-05-26T10:33:17Z) - Task Indicating Transformer for Task-conditional Dense Predictions [16.92067246179703]
We introduce a novel task-conditional framework called Task Indicating Transformer (TIT) to tackle this challenge.
Our approach designs a Mix Task Adapter module within the transformer block, which incorporates a Task Indicating Matrix through matrix decomposition.
We also propose a Task Gate Decoder module that harnesses a Task Indicating Vector and gating mechanism to facilitate adaptive multi-scale feature refinement.
arXiv Detail & Related papers (2024-03-01T07:06:57Z) - TaskBench: Benchmarking Large Language Models for Task Automation [82.2932794189585]
We introduce TaskBench, a framework to evaluate the capability of large language models (LLMs) in task automation.
Specifically, task decomposition, tool selection, and parameter prediction are assessed.
Our approach combines automated construction with rigorous human verification, ensuring high consistency with human evaluation.
arXiv Detail & Related papers (2023-11-30T18:02:44Z) - Fast Inference and Transfer of Compositional Task Structures for
Few-shot Task Generalization [101.72755769194677]
We formulate it as a few-shot reinforcement learning problem where a task is characterized by a subtask graph.
Our multi-task subtask graph inferencer (MTSGI) first infers the common high-level task structure in terms of the subtask graph from the training tasks.
Our experiment results on 2D grid-world and complex web navigation domains show that the proposed method can learn and leverage the common underlying structure of the tasks for faster adaptation to the unseen tasks.
arXiv Detail & Related papers (2022-05-25T10:44:25Z) - Environment Generation for Zero-Shot Compositional Reinforcement
Learning [105.35258025210862]
Compositional Design of Environments (CoDE) trains a Generator agent to automatically build a series of compositional tasks tailored to the agent's current skill level.
We learn to generate environments composed of multiple pages or rooms, and train RL agents capable of completing wide-range of complex tasks in those environments.
CoDE yields 4x higher success rate than the strongest baseline, and demonstrates strong performance of real websites learned on 3500 primitive tasks.
arXiv Detail & Related papers (2022-01-21T21:35:01Z) - Evolving Hierarchical Memory-Prediction Machines in Multi-Task
Reinforcement Learning [4.030910640265943]
Behavioural agents must generalize across a variety of environments and objectives over time.
We use genetic programming to evolve highly-generalized agents capable of operating in six unique environments from the control literature.
We show that emergent hierarchical structure in the evolving programs leads to multi-task agents that succeed by performing a temporal decomposition and encoding of the problem environments in memory.
arXiv Detail & Related papers (2021-06-23T21:34:32Z) - Dynamic Multi-Robot Task Allocation under Uncertainty and Temporal
Constraints [52.58352707495122]
We present a multi-robot allocation algorithm that decouples the key computational challenges of sequential decision-making under uncertainty and multi-agent coordination.
We validate our results over a wide range of simulations on two distinct domains: multi-arm conveyor belt pick-and-place and multi-drone delivery dispatch in a city.
arXiv Detail & Related papers (2020-05-27T01:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.