論文の概要: MedREQAL: Examining Medical Knowledge Recall of Large Language Models via Question Answering
- arxiv url: http://arxiv.org/abs/2406.05845v1
- Date: Sun, 9 Jun 2024 16:33:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-11 17:47:48.402870
- Title: MedREQAL: Examining Medical Knowledge Recall of Large Language Models via Question Answering
- Title(参考訳): MedREQAL:質問応答による大規模言語モデルの医学的リコールの検討
- Authors: Juraj Vladika, Phillip Schneider, Florian Matthes,
- Abstract要約: 大きな言語モデル(LLM)は、大きなテキストコーパスで事前学習中に知識を符号化する印象的な能力を示している。
体系的レビューから得られた新しいデータセットを構築することにより, LLMが医療知識のリコールを示す能力について検討する。
- 参考スコア(独自算出の注目度): 5.065947993017158
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, Large Language Models (LLMs) have demonstrated an impressive ability to encode knowledge during pre-training on large text corpora. They can leverage this knowledge for downstream tasks like question answering (QA), even in complex areas involving health topics. Considering their high potential for facilitating clinical work in the future, understanding the quality of encoded medical knowledge and its recall in LLMs is an important step forward. In this study, we examine the capability of LLMs to exhibit medical knowledge recall by constructing a novel dataset derived from systematic reviews -- studies synthesizing evidence-based answers for specific medical questions. Through experiments on the new MedREQAL dataset, comprising question-answer pairs extracted from rigorous systematic reviews, we assess six LLMs, such as GPT and Mixtral, analyzing their classification and generation performance. Our experimental insights into LLM performance on the novel biomedical QA dataset reveal the still challenging nature of this task.
- Abstract(参考訳): 近年,Large Language Models (LLMs) は,大規模テキストコーパスの事前学習において,知識を符号化する能力を発揮している。
彼らはこの知識を質問応答(QA)のような下流のタスクに活用することができる。
将来的な臨床研究の促進の可能性を考えると、符号化された医療知識の質とLSMにおけるリコールの理解は重要な一歩である。
本研究では, 組織的レビューから得られた新しいデータセットを構築し, 特定の医学的質問に対するエビデンスベースの回答を合成する研究により, LLMが医療知識のリコールを示す能力について検討した。
厳密な体系的レビューから抽出した質問応答対からなる新しいMedREQALデータセットの実験を通じて、GPTとMixtralの6つのLCMを評価し、それらの分類と生成性能を分析した。
新たなバイオメディカルQAデータセット上でのLCM性能に関する実験結果から,この課題のまだ困難な性質が明らかとなった。
関連論文リスト
- Comprehensive and Practical Evaluation of Retrieval-Augmented Generation Systems for Medical Question Answering [70.44269982045415]
Retrieval-augmented Generation (RAG) は,大規模言語モデル (LLM) の性能向上のための有望なアプローチとして登場した。
医療用QAデータセットに様々な補助的要素を提供するMedRGB(MedRGB)を導入する。
実験結果から,検索した文書のノイズや誤情報の処理能力に限界があることが判明した。
論文 参考訳(メタデータ) (2024-11-14T06:19:18Z) - The Potential of LLMs in Medical Education: Generating Questions and Answers for Qualification Exams [9.802579169561781]
大規模言語モデル(LLM)は、数発のプロンプトに基づいて、医学的資格試験の質問とそれに対応する回答を生成することができる。
研究によると、LSMは数発のプロンプトを使った後、現実世界の医学試験の質問を効果的に模倣できることがわかった。
論文 参考訳(メタデータ) (2024-10-31T09:33:37Z) - HealthQ: Unveiling Questioning Capabilities of LLM Chains in Healthcare Conversations [23.09755446991835]
デジタル医療において、大きな言語モデル(LLM)は質問応答能力を高めるために主に利用されてきた。
本稿では,LLMヘルスケアチェーンの問合せ能力を評価するための新しいフレームワークであるHealthQを提案する。
論文 参考訳(メタデータ) (2024-09-28T23:59:46Z) - OLAPH: Improving Factuality in Biomedical Long-form Question Answering [15.585833125854418]
MedLFQAは、バイオメディカルドメインに関連する長文質問回答データセットを用いて再構成されたベンチマークデータセットである。
また,コスト効率と多面的自動評価を利用した,シンプルで斬新なフレームワークであるOLAPHを提案する。
以上の結果から,OLAPHフレームワークでトレーニングした7B LLMでは,医療専門家の回答に匹敵する回答が得られた。
論文 参考訳(メタデータ) (2024-05-21T11:50:16Z) - Evaluating large language models in medical applications: a survey [1.5923327069574245]
大規模言語モデル(LLM)は、多くのドメインにまたがる変換可能性を持つ強力なツールとして登場した。
医学的文脈におけるLCMのパフォーマンスを評価することは、医療情報の複雑で批判的な性質から、ユニークな課題を提示する。
論文 参考訳(メタデータ) (2024-05-13T05:08:33Z) - A Survey of Large Language Models in Medicine: Progress, Application, and Challenge [85.09998659355038]
大規模言語モデル (LLM) は、人間の言語を理解し、生成する能力のために大きな注目を集めている。
本総説は,医学におけるLSMの開発と展開について概説することを目的としている。
論文 参考訳(メタデータ) (2023-11-09T02:55:58Z) - Towards Mitigating Hallucination in Large Language Models via
Self-Reflection [63.2543947174318]
大規模言語モデル(LLM)は、質問応答(QA)タスクを含む生成的および知識集約的なタスクを約束している。
本稿では,広範に採用されているLCMとデータセットを用いた医療再生QAシステムにおける幻覚現象を解析する。
論文 参考訳(メタデータ) (2023-10-10T03:05:44Z) - Adapted Large Language Models Can Outperform Medical Experts in Clinical Text Summarization [8.456700096020601]
大規模言語モデル (LLM) は自然言語処理 (NLP) において有望であるが, 様々な臨床要約タスクにおける有効性は証明されていない。
本研究では,4つの臨床要約課題にまたがる8つのLCMに適応法を適用した。
10名の医師による臨床読影者を対象に, 要約, 完全性, 正当性, 簡潔性を評価した。ほとんどの場合, ベスト適応LSMの要約は, 医用専門家の要約と比べ, 同等(45%), 上等(36%)である。
論文 参考訳(メタデータ) (2023-09-14T05:15:01Z) - Augmenting Black-box LLMs with Medical Textbooks for Biomedical Question Answering (Published in Findings of EMNLP 2024) [48.17095875619711]
LLMs Augmented with Medical Textbooks (LLM-AMT)を提案する。
LLM-AMTは、プラグイン・アンド・プレイモジュールを使用して、権威ある医学教科書をLLMのフレームワークに統合する。
検索コーパスとしての医学教科書は,医学領域におけるウィキペディアよりも効果的な知識データベースであることが確認された。
論文 参考訳(メタデータ) (2023-09-05T13:39:38Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
大規模言語モデル (LLMs) は、数発のテキスト内学習を通じて臨床キュレーションを加速する可能性を示している。
正確性や解釈可能性に関する問題、特に健康のようなミッションクリティカルな領域ではまだ苦戦している。
本稿では,自己検証を用いた汎用的な緩和フレームワークについて検討する。このフレームワークはLLMを利用して,自己抽出のための証明を提供し,その出力をチェックする。
論文 参考訳(メタデータ) (2023-05-30T22:05:11Z) - Retrieval-Augmented and Knowledge-Grounded Language Models for Faithful Clinical Medicine [68.7814360102644]
本稿では,Re$3$Writer法を提案する。
本手法が患者の退院指示生成に有効であることを示す。
論文 参考訳(メタデータ) (2022-10-23T16:34:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。